Articles | Volume 14
https://doi.org/10.5194/asr-14-123-2017
https://doi.org/10.5194/asr-14-123-2017
08 May 2017
 | 08 May 2017

Multimodel probabilistic prediction of 2 m-temperature anomalies on the monthly timescale

Alfonso Ferrone, Daniele Mastrangelo, and Piero Malguzzi

Related authors

Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022,https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Bolchem: an On-Line Coupled Mesoscale Chemistry Model
Rita Cesari, Alberto Maurizi, Massimo D'Isidoro, Tony Christian Landi, Mihaela Mircea, Felicita Russo, Piero Malguzzi, and Francesco Tampieri
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-124,https://doi.org/10.5194/gmd-2019-124, 2019
Publication in GMD not foreseen
Short summary
CNR-ISAC 2 m temperature monthly forecasts: a first probabilistic evaluation
Daniele Mastrangelo and Piero Malguzzi
Adv. Sci. Res., 14, 85–88, https://doi.org/10.5194/asr-14-85-2017,https://doi.org/10.5194/asr-14-85-2017, 2017
Short summary
Three-model ensemble wind prediction in southern Italy
Rosa Claudia Torcasio, Stefano Federico, Claudia Roberta Calidonna, Elenio Avolio, Oxana Drofa, Tony Christian Landi, Piero Malguzzi, Andrea Buzzi, and Paolo Bonasoni
Ann. Geophys., 34, 347–356, https://doi.org/10.5194/angeo-34-347-2016,https://doi.org/10.5194/angeo-34-347-2016, 2016
Short summary
A new high-resolution BOLAM-MOLOCH suite for the SIMM forecasting system: assessment over two HyMeX intense observation periods
S. Mariani, M. Casaioli, E. Coraci, and P. Malguzzi
Nat. Hazards Earth Syst. Sci., 15, 1–24, https://doi.org/10.5194/nhess-15-1-2015,https://doi.org/10.5194/nhess-15-1-2015, 2015
Short summary

Cited articles

Casanova, S. and Ahrens, B.: On the Weighting of Multimodel Ensembles in Seasonal and Short-Range Weather Forecasting, Mon. Weather Rev., 137, 3811–3822, https://doi.org/10.1175/2009MWR2893.1, 2009.
Hamill, T. M., Whitaker, J. S., and Wei, X.: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts, Mon. Weather Rev., 132, 1434–1447, 2004.
Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., Gadgil, S., and Surendran, S.: Multimodel Ensemble Forecasts for Weather and Seasonal Climate, J. Climate, 13, 4196–4216, https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2, 2000.
Malguzzi, P., Buzzi, A., and Drofa, O.: The meteorological global model GLOBO at the ISAC-CNR of Italy: Assessment of 1.5 years of experimental use for medium range weather forecast, Weather Forecast., 26, 1045–1055, 2011.
Download
Short summary
The ensemble reforecasts of the CNR-ISAC and ECMWF forecasting systems, both participating to the S2S project, have been combined in a multimodel ensemble. Tercile probability predictions of wintertime 2 m temperature produced through logistic regression outperform the probability estimation based on the direct count of ensemble members, in terms of RPSS and reliability diagrams. Also, it is argued that the logistic regression would not yield further improvements if a larger dataset were used.