Met Éireann high resolution reanalysis for Ireland
Research, Environment and Applications Division, Met Éireann, Dublin, Ireland
Eoin Whelan
Research, Environment and Applications Division, Met Éireann, Dublin, Ireland
John Hanley
Research, Environment and Applications Division, Met Éireann, Dublin, Ireland
Related authors
Eoghan Keany, Geoffrey Bessardon, and Emily Gleeson
Adv. Sci. Res., 19, 13–27, https://doi.org/10.5194/asr-19-13-2022, https://doi.org/10.5194/asr-19-13-2022, 2022
Short summary
Short summary
This work used machine learning to produce the first open source building height map of Ireland. This map is intended to more accurately determine Local Climate Zones for use in the underlying physiography dataset in the HARMONIE AROME numerical weather prediction model.
Eoin Walsh, Geoffrey Bessardon, Emily Gleeson, and Priit Ulmas
Adv. Sci. Res., 18, 65–87, https://doi.org/10.5194/asr-18-65-2021, https://doi.org/10.5194/asr-18-65-2021, 2021
Short summary
Short summary
In this work, machine learning techniques, satellite data and land-cover data were used to produce a land-cover map for Ireland that shows greater accuracy and resolution than an altered version of the standard land-cover map (ECOCLIMAP-SG) used for numerical weather prediction. This method offers a way to universally improve meteorological land-cover maps across jurisdictions, while also offering a method of updating the map regularly to account for seasonal changes in surface land-covers.
Emily Gleeson, Stephen Outten, Bjørg Jenny Kokkvoll Engdahl, Eoin Whelan, Ulf Andrae, and Laura Rontu
Adv. Sci. Res., 17, 255–267, https://doi.org/10.5194/asr-17-255-2020, https://doi.org/10.5194/asr-17-255-2020, 2020
Short summary
Short summary
The single-column version of the shared ALADIN-HIRLAM numerical weather prediction system, called MUSC, was developed by Météo-France in the 2000s and has a growing user-base. Tools to derive the required input, to run experiments and to handle outputs have been developed within the HARMONIE-AROME configuration of the ALADIN-HIRLAM system. We also illustrate the usefulness of MUSC for testing and developing physical parametrizations related to cloud microphysics and radiative transfer.
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019, https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary
Short summary
The Northeast Atlantic possesses an energetic and variable wind and wave climate which has a large potential for renewable energy extraction. The role of surface winds in the generation of ocean waves means that global atmospheric circulation patterns and wave climate characteristics are inherently connected. In this study we investigated the influence of large scale atmospheric oscillations on waves in the Northeast Atlantic using a high resolution wave projection dataset.
Ruth Mottram, Kristian Pagh Nielsen, Emily Gleeson, and Xiaohua Yang
Adv. Sci. Res., 14, 323–334, https://doi.org/10.5194/asr-14-323-2017, https://doi.org/10.5194/asr-14-323-2017, 2017
Short summary
Short summary
The HARMONIE weather forecasting model is used successfully in Greenland, but there are some problems over the ice sheet due to the lack of realistic glacier surface characteristics. By introducing a correction to the model, preventing glacier surface temperatures over 0 °C, we improve both 2 m air temperature and the surface winds (both strength and direction) forecast by the model.
We also identify other corrections needed before HARMONIE can be used for climate and ice sheet modelling.
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Emily Gleeson, Sarah Gallagher, Colm Clancy, and Frédéric Dias
Adv. Sci. Res., 14, 23–33, https://doi.org/10.5194/asr-14-23-2017, https://doi.org/10.5194/asr-14-23-2017, 2017
Short summary
Short summary
Large scale atmospheric oscillations, such as the North Atlantic Oscillation are known to have an influence on waves in the North Atlantic. This study investigated the influence of the NAO on the present and future wind and wave climate in the Northeast Atlantic near Ireland.
Emily Gleeson, Velle Toll, Kristian Pagh Nielsen, Laura Rontu, and Ján Mašek
Atmos. Chem. Phys., 16, 5933–5948, https://doi.org/10.5194/acp-16-5933-2016, https://doi.org/10.5194/acp-16-5933-2016, 2016
Short summary
Short summary
The direct shortwave (SW) radiative effect of aerosols under clear-sky conditions in the ALADIN-HIRLAM numerical weather prediction system was investigated using three SW radiation schemes in diagnostic single-column experiments. Each scheme accurately simulates the direct SW effect when observed aerosols are used, particularly for heavy pollution scenarios.
Sarah Gallagher, Emily Gleeson, Roxana Tiron, Ray McGrath, and Frédéric Dias
Adv. Sci. Res., 13, 75–80, https://doi.org/10.5194/asr-13-75-2016, https://doi.org/10.5194/asr-13-75-2016, 2016
Short summary
Short summary
As an island located in the North Atlantic Ocean with a highly energetic wave and wind climate, Ireland is uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of this resource makes it a priority to quantify how the wave and wind climate may change in the future. We examine how surface winds in the North Atlantic Ocean may change towards the end of this century due to global climate change, and how these changes may affect Ireland's wave climate.
K. P. Nielsen, E. Gleeson, and L. Rontu
Geosci. Model Dev., 7, 1433–1449, https://doi.org/10.5194/gmd-7-1433-2014, https://doi.org/10.5194/gmd-7-1433-2014, 2014
Eoghan Keany, Geoffrey Bessardon, and Emily Gleeson
Adv. Sci. Res., 19, 13–27, https://doi.org/10.5194/asr-19-13-2022, https://doi.org/10.5194/asr-19-13-2022, 2022
Short summary
Short summary
This work used machine learning to produce the first open source building height map of Ireland. This map is intended to more accurately determine Local Climate Zones for use in the underlying physiography dataset in the HARMONIE AROME numerical weather prediction model.
Eoin Walsh, Geoffrey Bessardon, Emily Gleeson, and Priit Ulmas
Adv. Sci. Res., 18, 65–87, https://doi.org/10.5194/asr-18-65-2021, https://doi.org/10.5194/asr-18-65-2021, 2021
Short summary
Short summary
In this work, machine learning techniques, satellite data and land-cover data were used to produce a land-cover map for Ireland that shows greater accuracy and resolution than an altered version of the standard land-cover map (ECOCLIMAP-SG) used for numerical weather prediction. This method offers a way to universally improve meteorological land-cover maps across jurisdictions, while also offering a method of updating the map regularly to account for seasonal changes in surface land-covers.
Emily Gleeson, Stephen Outten, Bjørg Jenny Kokkvoll Engdahl, Eoin Whelan, Ulf Andrae, and Laura Rontu
Adv. Sci. Res., 17, 255–267, https://doi.org/10.5194/asr-17-255-2020, https://doi.org/10.5194/asr-17-255-2020, 2020
Short summary
Short summary
The single-column version of the shared ALADIN-HIRLAM numerical weather prediction system, called MUSC, was developed by Météo-France in the 2000s and has a growing user-base. Tools to derive the required input, to run experiments and to handle outputs have been developed within the HARMONIE-AROME configuration of the ALADIN-HIRLAM system. We also illustrate the usefulness of MUSC for testing and developing physical parametrizations related to cloud microphysics and radiative transfer.
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019, https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary
Short summary
The Northeast Atlantic possesses an energetic and variable wind and wave climate which has a large potential for renewable energy extraction. The role of surface winds in the generation of ocean waves means that global atmospheric circulation patterns and wave climate characteristics are inherently connected. In this study we investigated the influence of large scale atmospheric oscillations on waves in the Northeast Atlantic using a high resolution wave projection dataset.
Ruth Mottram, Kristian Pagh Nielsen, Emily Gleeson, and Xiaohua Yang
Adv. Sci. Res., 14, 323–334, https://doi.org/10.5194/asr-14-323-2017, https://doi.org/10.5194/asr-14-323-2017, 2017
Short summary
Short summary
The HARMONIE weather forecasting model is used successfully in Greenland, but there are some problems over the ice sheet due to the lack of realistic glacier surface characteristics. By introducing a correction to the model, preventing glacier surface temperatures over 0 °C, we improve both 2 m air temperature and the surface winds (both strength and direction) forecast by the model.
We also identify other corrections needed before HARMONIE can be used for climate and ice sheet modelling.
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Emily Gleeson, Sarah Gallagher, Colm Clancy, and Frédéric Dias
Adv. Sci. Res., 14, 23–33, https://doi.org/10.5194/asr-14-23-2017, https://doi.org/10.5194/asr-14-23-2017, 2017
Short summary
Short summary
Large scale atmospheric oscillations, such as the North Atlantic Oscillation are known to have an influence on waves in the North Atlantic. This study investigated the influence of the NAO on the present and future wind and wave climate in the Northeast Atlantic near Ireland.
Emily Gleeson, Velle Toll, Kristian Pagh Nielsen, Laura Rontu, and Ján Mašek
Atmos. Chem. Phys., 16, 5933–5948, https://doi.org/10.5194/acp-16-5933-2016, https://doi.org/10.5194/acp-16-5933-2016, 2016
Short summary
Short summary
The direct shortwave (SW) radiative effect of aerosols under clear-sky conditions in the ALADIN-HIRLAM numerical weather prediction system was investigated using three SW radiation schemes in diagnostic single-column experiments. Each scheme accurately simulates the direct SW effect when observed aerosols are used, particularly for heavy pollution scenarios.
Sarah Gallagher, Emily Gleeson, Roxana Tiron, Ray McGrath, and Frédéric Dias
Adv. Sci. Res., 13, 75–80, https://doi.org/10.5194/asr-13-75-2016, https://doi.org/10.5194/asr-13-75-2016, 2016
Short summary
Short summary
As an island located in the North Atlantic Ocean with a highly energetic wave and wind climate, Ireland is uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of this resource makes it a priority to quantify how the wave and wind climate may change in the future. We examine how surface winds in the North Atlantic Ocean may change towards the end of this century due to global climate change, and how these changes may affect Ireland's wave climate.
K. P. Nielsen, E. Gleeson, and L. Rontu
Geosci. Model Dev., 7, 1433–1449, https://doi.org/10.5194/gmd-7-1433-2014, https://doi.org/10.5194/gmd-7-1433-2014, 2014
Cited articles
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Ødegaard Køltzow, M.: The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system, Mon. Weather Rev., https://doi.org/10.1175/MWR-D-16-0417.1, 2017.
Berre, L.: Estimation of Synoptic and Mesoscale Forecast Error Covariances in a Limited-Area Model, Mon. Weather Rev., 128, 644–667, https://doi.org/10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2, 2000.
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soc., 141, 1–15, https://doi.org/10.1002/qj.2486, 2015.
Bromwich, D., Kuo, Y.-H., Serreze, M., Walsh, J., Bai, L.-S., Barlage, M., Hines, K., and Slater, A.: Arctic system reanalysis: call for community involvement, Eos, Transactions American Geophysical Union, 91, 13–14, 2010.
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Background-error covariances for a convective-scale data-assimilation system: AROME-France 3D-Var, Q. J. Roy. Meteor. Soc., 137, 409–422, https://doi.org/10.1002/qj.750, 2011.
Burgers, G., Baas, P., and van den Brink, H.: Towards an extreme wind climatology for The Netherlands based on downscaling ERA-Interim with the HARMONIE-AROME high-resolution model, poster presented at EGU 2013, Vienna, 2013.
Dahlgren, P., Landelius, T., Kållberg, P., and Gollvik, S.: A high-resolution regional reanalysis for Europe. Part 1: Three-dimensional reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM), Q. J. Roy. Meteor. Soc., 142, 2119–2131, https://doi.org/10.1002/qj.2807, 2016.
Davies, T.: Lateral boundary conditions for limited area models, Q. J. Roy. Meteor. Soc., 140, 185–196, https://doi.org/10.1002/qj.2127, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kȧllberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Fischer, C., Montmerle, T., Berre, L., Auger, L., and Şfănescu, S. E.: An overview of the variational assimilation in the ALADIN/France numerical weather-prediction system, Q. J. Roy. Meteor. Soc., 131, 3477–3492, https://doi.org/10.1256/qj.05.115, 2005.
Fleming, R., Kaneshige, T., and McGovern, W.: The Global Weather Experiment 1. The observational phase through the first special observing period, B. Am. Meteorol. Soc., 60, 649–661, 1979.
Gallagher, S., Tiron, R., Whelan, E., Dias, F., and McGrath, R.: The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility, Renew. Energ., 88, 494–516, https://doi.org/10.1016/j.renene.2015.11.010, 2016.
Harris, L. M. and Durran, D. R.: An Idealized Comparison of One-Way and Two-Way Grid Nesting, Mon. Weather Rev., 138, 2174–2187, https://doi.org/10.1175/2010MWR3080.1, 2010.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter 147, ECMWF, http://www.ecmwf.int/en/elibrary/16299-newsletter-no147-sprin% g-2016 (last access: 24 March 2017), 2016.
Hersbach, H., Peubey, C., Simmons, A., Poli, P., Dee, D., and Berrisford, P.: ERA-20CM: a twentieth century atmospheric model ensemble, Shinfield Park, Reading, 2013.
Hollweg, H. D., Böhm, U., Fast, I., Hennemuth, B., Keuler, K., Keup-Thiel, E., Lautenschlager, M., Legutke, S., Radtke, K., Rockel, B., Schubert, M., Will, A., Woldt, M., and Wunram, C.: Ensemble Simulations over Europe with the Regional Climate Model CLM forced with IPCC AR4 Global Scenarios, Tech. Rep. 3, Max-Planck Institute for meteorology, Model and Data, 2008.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kar, S., Routray, A., and Mali, P.: South Asian regional reanalysis, in: 4th World Climate Research Programme International Conference on Reanalyses, 2016.
Kasahara, A., Mizzi, A., and Donner, L.: Impact Of Cumulus Initialization on the Spinup of Precipitation Forecasts in the Tropics, Mon. Weather Rev., 120, 1360–1380, https://doi.org/10.1175/1520-0493(1992)120<1360:IOCIOT>2.0.CO;2, 1992.
Klein Tank, A.: EURO4M: monitoring weather and climate extremes in Europe, in: 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, 13–17 September 2010 in Zürich, Switzerland, http://meetings.copernicus.org/ems2010/ (last access: 24 March 2017), id. EMS2010-202, vol. 1, p. 202, 2010.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Luhamaa, A., Kimmel, K., Männik, A., and Rõõm, R.: High resolution re-analysis for the Baltic Sea region during 1965–2005 period, Clim. Dynam., 36, 727–738, https://doi.org/10.1007/s00382-010-0842-y, 2011.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Poli, P., Hersbach, H., Tan, D. G. H., Dee, D., Thepaut, J.-J., Simmons, A., Peubey, C., Laloyaux, P., Komori, T., Berrisford, P., Dragani, R., Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher, M.: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C), Shinfield Park, Reading, 2013.
Rienecker, M., Suarez, M., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M., Schubert, S., Takacs, L., Kim, G., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C., Reichle, R., Robertson, F., Ruddick, A., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Sánchez Arriola, J., Lindskog, M., Thorsteinsson, S., and Bojarova, J.: Variational Bias Correction of GNSS ZTD in the HARMONIE Modeling System, J. Appl. Meteorol. Clim., 55, 1259–1276, https://doi.org/10.1175/JAMC-D-15-0137.1, 2016.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational Model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.
Stepek, A., Savenije, M., van den Brink, H., and Wijnant, I.: Validation of KNW atlas with publicly available mast observations (Phase 3 of KNW project), Tech. rep., KNMI Technical Report TR352, 2015.
Taillefer, F.: CANARI – Technical Documentation – Based on ARPEGE cycle CY25T1 (AL25T1 for ALADIN), Tech. rep., CNRM/GMAP, 2002.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
UERRA: UERRA Newsletter Number 3, Newsletter 3, http://www.uerra.eu/182-newsletter-no-3-january-2017.html, last access: 27 March 2017.
Unden, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J. A., Jones, C., Geert, Lenderlink, G., Mcdonald, A., Mcgrath, R., Navascues, B., Nielsen, N. W., Degaard, V., Rodriguez, E., Rummukainen, M., Sattler, K., Sass, B. H., Savijarvi, H., Schreur, B. W., Sigg, R., and The, H.: HIRLAM-5 Scientific Documentation, http://hirlam.org/index.php/hirlam-documentation/doc_download/308-unden-et-al-2002 (last access: 28 March 2017), 2002.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Warner, T. T., Peterson, R. A., and Treadon, R. E.: A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction, B. Am. Meteorol. Soc., 78, 2599–2617, https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2, 1997.
Whelan, E. and Gleeson, E.: Met Éireann High Resolution Reanalysis for Ireland, in: Proceedings of the National Hydrology Seminar 2016, Office of Public Works, 2016.
Short summary
This paper is a summary of a very high resolution climate reanalysis carried out for a domain covering Ireland, using the HARMONIE-AROME numerical weather prediction model. Details of the simulations and set-up as well as a preliminary analysis of the main output variables are included in the study.
This paper is a summary of a very high resolution climate reanalysis carried out for a domain...