Fischer, B., Goldberg, V., and Bernhofer, C.: Effect of a coupled soil
water–plant gas exchange on forest energy fluxes: Simulations with the
coupled vegetation–boundary layer model HIRVAC, Ecol. Model., 214,
75–82, https://doi.org/10.1016/j.ecolmodel.2008.02.037, 2008.
Gross, G.: Numerical simulation of future low-level jet characteristics,
Meteorol. Z., 21, 305–311, https://doi.org/10.1127/0941-2948/2012/0279, 2012.
Gutierrez, W., Araya, G., Kiliyanpilakkil, P., Ruiz-Columbie, A., Tutkun,
M., and Castillo, L.: Structural impact assessment of low level jets over
wind turbines, J. Renew. Sust. Ener., 8, 023308,
https://doi.org/10.1063/1.4945359, 2016.
Hoymann, J. and Goetzke, R.: Die Zukunft der Landnutzung in
Deutschland–Darstellung eines methodischen Frameworks, Raumforsch.
Raumordn., 72, 211–225, https://doi.org/10.1007/s13147-014-0290-y, 2014.
Ivanell, S., Arnqvist, J., Avila, M., Cavar, D., Chavez-Arroyo, R. A.,
Olivares-Espinosa, H., Peralta, C., Adib, J., and Witha, B.: Micro-Scale
Model Comparison (Benchmark) at the Moderately Complex Forested Site
Ryningsnäs, Wind Energy Science, 3, 929–946, https://doi.org/10.5194/wes-3-929-2018, 2018.
Kalverla, P. C., Duncan Jr., J. B., Steeneveld, G.-J., and Holtslag, A. A.
M.: Low-Level Jets over the North Sea Based on ERA5 and Observations:
Together They Do Better, Wind Energy Science, 4, 193–209, https://doi.org/10.5194/wes-4-193-2019, 2019.
Lampert, A., Bernalte Jimenez, B., Gross, G., Wulff, D., and Kenull, T.:
One-year observations of the wind distribution and low-level jet occurrence
at Braunschweig, North German Plain, Wind Energy, 19, 1807–17, https://doi.org/10.1002/we.1951, 2016.
Lettau, H.: Graphs and illustrations of diverse atmospheric states and
processes observed during the seventh test period of the Great Plains
turbulence field program, Occasional Report 1, Atmospheric Analysis
Laboratory, Air Force Cambridge Research Center, Bedford, Massachusetts, 1954.
Queck, R., Bernhofer, C., Bienert, A., Eipper, T., Goldberg, V., Harmansa,
S., Hildebrand, V., Maas, H. G., Schlegel, F., and Stiller, J.: TurbEFA: an
interdisciplinary effort to investigate the turbulent flow across a forest
clearing, Meteorol. Z., 6, 637–659, https://doi.org/10.1127/metz/2014/0567, 2015.
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Sanz Rodrigo, J., Churchfield, M., and Kosovic, B.: A methodology for the
design and testing of atmospheric boundary layer models for wind energy
applications, Wind Energy Science, 2, 35–54, https://doi.org/10.5194/wes-2-35-2017, 2017.
Storm, B., Dudhia, J., Basu, S., Swift, A., and Giammanco, I.: Evaluation of
the Weather Research and Forecasting model on forecasting low-level jets:
implications for wind energy, Wind Energy, 12, 81–90, https://doi.org/10.1002/we.288, 2009.
Stull, R.: An Introduction to Boundary-Layer Meteorology, Kluwer Academic
Publishers, Dordrecht, 666 pp., 1988.
Walter, A., Keuler, K., Jacob, D., Knoche, R., Block, A., Kotlarski, S.,
Müller-Westermeier, G., Rechid, D., and Ahrens, W.: A high resolution
reference data set of German wind velocity 1951–2001 and comparison with
regional climate model results, Meteorol. Z., 15, 585–596, https://doi.org/10.1127/0941-2948/2006/0162, 2006.
Wilczak, J., Finley, C., Freedman, J., Cline, J., Bianco, L., Olson, J., and
Djalalova, I.: The wind forecast improvement project (WFIP): A
public–private partnership addressing wind energy forecast needs, B. Am. Meteorol. Soc., 96, 1699–1718, https://doi.org/10.1175/BAMS-D-14-00107.1, 2014.
Ziemann, A.: Numerical simulation of meteorological quantities in and above
forest canopies, Meteorol. Z., 7, 120–128, 1998.