Observation of wave-driven air–water turbulent momentum exchange in a large but fetch-limited shallow lake
Gabriella Lükő
Department of Hydraulic and Water Resources Engineering, Budapest
University of Technology and Economics, Budapest, Hungary
Department of Hydraulic and Water Resources Engineering, Budapest
University of Technology and Economics, Budapest, Hungary
Tamás Krámer
Department of Hydraulic and Water Resources Engineering, Budapest
University of Technology and Economics, Budapest, Hungary
Tamás Weidinger
Department of Meteorology, Eötvös Loránd University,
Budapest, Hungary
Zeljko Vecenaj
Institute of Geophysics, University of Zagreb, Zagreb, Croatia
Branko Grisogono
Institute of Geophysics, University of Zagreb, Zagreb, Croatia
Related authors
No articles found.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Beáta Molnár, Tamás Weidinger, and Péter Tasnádi
Adv. Sci. Res., 19, 159–165, https://doi.org/10.5194/asr-19-159-2023, https://doi.org/10.5194/asr-19-159-2023, 2023
Short summary
Short summary
We considered it important to complete the content knowledge of secondary school physics with those concerning atmospheric humidity, fog, and air pollution. For this aim, a three-hour teaching module was elaborated, which included the analysis of the air-polluting events together with the foggy weather. The experimental curriculum motivated the students to understand processes that take place in their environment regarding environmental protection.
Imre Salma, Máté Vörösmarty, András Zénó Gyöngyösi, Wanda Thén, and Tamás Weidinger
Atmos. Chem. Phys., 20, 15725–15742, https://doi.org/10.5194/acp-20-15725-2020, https://doi.org/10.5194/acp-20-15725-2020, 2020
Short summary
Short summary
Motor vehicle road traffic in Budapest was reduced by approximately 50% of its ordinary level due to COVID-19. In parallel, concentrations of most criteria air pollutants declined by 30–60%. Change rates of NO and NO2 with relative change in traffic intensity were the largest, total particle number concentration showed considerable dependency, while particulate matter mass concentrations did not appear to be related to urban traffic. Concentrations of O3 showed an increasing tendency.
Santtu Mikkonen, Zoltán Németh, Veronika Varga, Tamás Weidinger, Ville Leinonen, Taina Yli-Juuti, and Imre Salma
Atmos. Chem. Phys., 20, 12247–12263, https://doi.org/10.5194/acp-20-12247-2020, https://doi.org/10.5194/acp-20-12247-2020, 2020
Short summary
Short summary
We determined decennial statistical time trends and diurnal statistical patterns of atmospheric particle number concentrations in various relevant size fractions in the city centre of Budapest in an interval of 2008–2018. The mean overall decrease rate of particles in different size fractions was approximately −5 % scaled for the 10-year measurement interval. The decline can be interpreted as a consequence of the decreased anthropogenic emissions in the city.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Goran Gašparac, Amela Jeričević, Prashant Kumar, and Branko Grisogono
Atmos. Chem. Phys., 20, 6395–6415, https://doi.org/10.5194/acp-20-6395-2020, https://doi.org/10.5194/acp-20-6395-2020, 2020
Short summary
Short summary
Two different available air quality modelling systems were used to investigate physical and chemical processes that contributed to increased daily background PM10 in all of Europe (focusing on eastern and central Europe). Differentiation of modelling performance in respect to the terrain height was found. A strong influence of meteorological conditions on increased background PM10 and statically stable atmospheric conditions were recognized as a key factor in the build-up of background PM10.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Mónika Lakatos, Tamás Weidinger, Lilla Hoffmann, Zita Bihari, and Ákos Horváth
Adv. Sci. Res., 16, 251–259, https://doi.org/10.5194/asr-16-251-2020, https://doi.org/10.5194/asr-16-251-2020, 2020
Short summary
Short summary
The PannEx is a Regional Hydroclimate Project (RHP) of the GEWEX project. A gridded meteorological dataset is available for the PannEx region as part of the CarpatClim database. The objectives of this study are: (i) to compute (ET0) for the CarpatClim dataset in the period 1961–2010 on the daily scale by using the Penman-Monteith method, and (ii) to compare ET0 with the classical Thornthwaite estimates of PET.
Imre Salma, Zoltán Németh, Tamás Weidinger, Willy Maenhaut, Magda Claeys, Mihály Molnár, István Major, Tibor Ajtai, Noémi Utry, and Zoltán Bozóki
Atmos. Chem. Phys., 17, 13767–13781, https://doi.org/10.5194/acp-17-13767-2017, https://doi.org/10.5194/acp-17-13767-2017, 2017
Short summary
Short summary
The major finding of this study lies in the new pragmatic coupled radiocarbon–LVG apportionment scheme, which allows assessment of the contribution of the major carbonaceous species from fossil fuel combustion, biomass burning and biogenic sources with a reasonable uncertainty, and without coupling of thermal or separation methods with an AMS for rather small amounts of samples.
Cited articles
Abdella, K. and D'Alessio, S. J. D.: On the parameterization of the roughness length for the air–sea interface in free convection, Environ. Fluid Mech., 4, 451–453, https://doi.org/10.1007/s10652-005-1668-8, 2005.
Donelan, M. A., Dobson, F. W., Smith, S. D., and Anderson, R. J.: On the
Dependence of Sea Surface Roughness On Wave Development, J. Phys. Oceanogr., 23, 2143–2149, https://doi.org/10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2,
1993.
Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C.: On the wave age
dependence of wind stress over pure wind seas, J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715, 2003.
Dyer, A. J.: A review of flux-profile relationships, Bound.-Lay. Meteorol., 7, 363–372, https://doi.org/10.1007/BF00240838, 1974.
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On the exchange of momentum over the open ocean, J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013.
Fisher, A. W., Sanford, L. P., and Suttles, S. E.: Wind Stress Dynamics in
Chesapeake Bay: Spatiotemporal Variability and Wave Dependence in a Fetch-Limited Environment, J. Phys. Oceanogr., 45, 2679–2696, https://doi.org/10.1175/jpo-d-15-0004.1, 2015.
Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B. D., and Munger, J. W.: Post-field data quality control, in: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, edited by: Lee, X., Massman, W., and Law, B., Kluwer, Dordrecht, 181–208, https://doi.org/10.1007/1-4020-2265-4, 2004.
Geernaert, G. L., Larsen, S. E., and Hansen, F.: Measurements of the Wind
Stress, Heat Flux, and Turbulence Intensity during Storm Conditions over the
North Sea, J. Geophys. Res., 92, 127-139, https://doi.org/10.1029/JC092iC12p13127, 1987.
Holthujsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511618536, 2007.
Istvánovics, V. and Honti, M.: Coupled simulation of high-frequency dynamics of dissolved oxygen and chlorophyll widens the scope of lake metabolism studies, Limnol. Oceanogr., 63, 72-90, https://doi.org/10.1002/lno.10615, 2018.
Johnson, H. K., Højstrup, J., Vested, H. J., and Larsen, S. E.: On the
dependence of sea surface roughness on wind waves, J. Phys. Oceanogr., 28, 1702–1716, https://doi.org/10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2,
1998.
Lin, W., Sanford, L. P., Suttles, S. E., and Valigura, R.: Drag coefficients
with fetch-limited wind waves, J. Phys. Oceanogr., 32, 3058–3074, https://doi.org/10.1175/1520-0485(2002)032< 3058:DCWFLW>2.0.CO;2, 2002.
Maat, N., Kraan, C., and Oost, W. A.: The Roughness of Wind Waves, Bound.-Lay. Meteorol., 54, 89–103, https://doi.org/10.1007/BF00119414, 1991.
Mauder, M. and Foken, T.: Documentation and Instruction Manual of the
Eddy-Covariance Software Package TK3, Arbeitsergebnisse, zenodo,
https://doi.org/10.5281/zenodo.20349, 2011.
McMillen, R. T.: An eddy correlation technique with extended applicability to non-simple terrain, Bound.-Lay. Meteorol., 43, 231–245, https://doi.org/10.1007/BF00128405, 1988.
Olabarrieta, M., Warner, J. C., Armstrong, B., Zambon, J. B., and He, R.:
Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system, Ocean Model., 43–44, 112–137, https://doi.org/10.1016/j.ocemod.2011.12.008,
2012.
Oost, W. A., Komen, G. J., Jacobs, C. M. J., and Van Oort, C.: New evidence
for a relation between wind stress and wave age from measurements during
ASGAMAGE, Bound.-Lay. Meteorol., 103, 409–438, https://doi.org/10.1023/A:1014913624535, 2002.
Rizza, U., Canepa, E., Ricchi, A., Bonaldo, D., Carniel, S., Morichetti, M.,
Passerini, G., Santiloni, L., Puhales, F. S., and Miglietta, M. M.: Influence
of wave state and sea spray on the roughness length: Feedback on medicanes,
Atmosphere, 9, 301, https://doi.org/10.3390/atmos9080301, 2018.
Shi, L., Olabarrieta, M., Valle-Levinson, A., and Warner, J. C.: Relevance of wind stress and wave-dependent ocean surface roughness on the generation of winter meteotsunamis in the Northern Gulf of Mexico, Ocean Model., 140, 101408, https://doi.org/10.1016/j.ocemod.2019.101408, 2019.
Smith, S. D., Anderson, R. J., Oost, W. A., Kraan, C., Maat, N., De Cosmo,
J., Katsaros, K. B., Davidson, K. L., Bumke, K., Hasse, L., and Chadwick, H.
M.: Wind Stress and Drag Coefficients, Bound.-Lay. Meteorol., 60, 109–142, https://doi.org/10.1007/BF00122064, 1992.
Taylor, P. K. and Yelland, M. J.: The dependence of sea surface roughness on the height and steepness of the waves, J. Phys. Oceanogr., 31, 572–590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2, 2001.
Torma, P. and Krámer, T.: Modeling the Effect of Waves on the Diurnal
Temperature Stratification of a Shallow Lake, Period. Polytech. Civ. Eng., 61, 165–175, https://doi.org/10.3311/PPci.8883, 2017a.
Torma, P. and Krámer, T.: Wind Shear Stress Interpolation over Lake Surface from Routine Weather Data Considering the IBL Development, Period.
Polytechn. Civ. Eng., 61, 14–26, https://doi.org/10.3311/PPci.9542, 2017b.
Vickers, D. and Mahrt, L.: Fetch Limited Drag Coefficients, Bound.-Lay. Meteorol., 85, 53–79, https://doi.org/10.1023/A:1000472623187, 1997.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt
correction algorithms, Bound.-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465, 2001.
Short summary
This paper proposes new relationships for momentum exchange through the air–water interface for medium size lakes. High-resolution wind and wave measurements were performed simultaneously in onshore and offshore stations in Lake Balaton. Our results show that the surface drag is remarkably higher compared to open ocean conditions due to the very young wave state which is a typical feature of midsize freshwater lakes.
This paper proposes new relationships for momentum exchange through the air–water interface for...