Observation of wave-driven air–water turbulent momentum exchange in a large but fetch-limited shallow lake
Gabriella Lükő
Department of Hydraulic and Water Resources Engineering, Budapest
University of Technology and Economics, Budapest, Hungary
Department of Hydraulic and Water Resources Engineering, Budapest
University of Technology and Economics, Budapest, Hungary
Tamás Krámer
Department of Hydraulic and Water Resources Engineering, Budapest
University of Technology and Economics, Budapest, Hungary
Tamás Weidinger
Department of Meteorology, Eötvös Loránd University,
Budapest, Hungary
Zeljko Vecenaj
Institute of Geophysics, University of Zagreb, Zagreb, Croatia
Branko Grisogono
Institute of Geophysics, University of Zagreb, Zagreb, Croatia
Related authors
No articles found.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Beáta Molnár, Tamás Weidinger, and Péter Tasnádi
Adv. Sci. Res., 19, 159–165, https://doi.org/10.5194/asr-19-159-2023, https://doi.org/10.5194/asr-19-159-2023, 2023
Short summary
Short summary
We considered it important to complete the content knowledge of secondary school physics with those concerning atmospheric humidity, fog, and air pollution. For this aim, a three-hour teaching module was elaborated, which included the analysis of the air-polluting events together with the foggy weather. The experimental curriculum motivated the students to understand processes that take place in their environment regarding environmental protection.
Imre Salma, Máté Vörösmarty, András Zénó Gyöngyösi, Wanda Thén, and Tamás Weidinger
Atmos. Chem. Phys., 20, 15725–15742, https://doi.org/10.5194/acp-20-15725-2020, https://doi.org/10.5194/acp-20-15725-2020, 2020
Short summary
Short summary
Motor vehicle road traffic in Budapest was reduced by approximately 50% of its ordinary level due to COVID-19. In parallel, concentrations of most criteria air pollutants declined by 30–60%. Change rates of NO and NO2 with relative change in traffic intensity were the largest, total particle number concentration showed considerable dependency, while particulate matter mass concentrations did not appear to be related to urban traffic. Concentrations of O3 showed an increasing tendency.
Santtu Mikkonen, Zoltán Németh, Veronika Varga, Tamás Weidinger, Ville Leinonen, Taina Yli-Juuti, and Imre Salma
Atmos. Chem. Phys., 20, 12247–12263, https://doi.org/10.5194/acp-20-12247-2020, https://doi.org/10.5194/acp-20-12247-2020, 2020
Short summary
Short summary
We determined decennial statistical time trends and diurnal statistical patterns of atmospheric particle number concentrations in various relevant size fractions in the city centre of Budapest in an interval of 2008–2018. The mean overall decrease rate of particles in different size fractions was approximately −5 % scaled for the 10-year measurement interval. The decline can be interpreted as a consequence of the decreased anthropogenic emissions in the city.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Cited articles
Abdella, K. and D'Alessio, S. J. D.: On the parameterization of the roughness length for the air–sea interface in free convection, Environ. Fluid Mech., 4, 451–453, https://doi.org/10.1007/s10652-005-1668-8, 2005.
Donelan, M. A., Dobson, F. W., Smith, S. D., and Anderson, R. J.: On the
Dependence of Sea Surface Roughness On Wave Development, J. Phys. Oceanogr., 23, 2143–2149, https://doi.org/10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2,
1993.
Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C.: On the wave age
dependence of wind stress over pure wind seas, J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715, 2003.
Dyer, A. J.: A review of flux-profile relationships, Bound.-Lay. Meteorol., 7, 363–372, https://doi.org/10.1007/BF00240838, 1974.
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On the exchange of momentum over the open ocean, J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013.
Fisher, A. W., Sanford, L. P., and Suttles, S. E.: Wind Stress Dynamics in
Chesapeake Bay: Spatiotemporal Variability and Wave Dependence in a Fetch-Limited Environment, J. Phys. Oceanogr., 45, 2679–2696, https://doi.org/10.1175/jpo-d-15-0004.1, 2015.
Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B. D., and Munger, J. W.: Post-field data quality control, in: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, edited by: Lee, X., Massman, W., and Law, B., Kluwer, Dordrecht, 181–208, https://doi.org/10.1007/1-4020-2265-4, 2004.
Geernaert, G. L., Larsen, S. E., and Hansen, F.: Measurements of the Wind
Stress, Heat Flux, and Turbulence Intensity during Storm Conditions over the
North Sea, J. Geophys. Res., 92, 127-139, https://doi.org/10.1029/JC092iC12p13127, 1987.
Holthujsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511618536, 2007.
Istvánovics, V. and Honti, M.: Coupled simulation of high-frequency dynamics of dissolved oxygen and chlorophyll widens the scope of lake metabolism studies, Limnol. Oceanogr., 63, 72-90, https://doi.org/10.1002/lno.10615, 2018.
Johnson, H. K., Højstrup, J., Vested, H. J., and Larsen, S. E.: On the
dependence of sea surface roughness on wind waves, J. Phys. Oceanogr., 28, 1702–1716, https://doi.org/10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2,
1998.
Lin, W., Sanford, L. P., Suttles, S. E., and Valigura, R.: Drag coefficients
with fetch-limited wind waves, J. Phys. Oceanogr., 32, 3058–3074, https://doi.org/10.1175/1520-0485(2002)032< 3058:DCWFLW>2.0.CO;2, 2002.
Maat, N., Kraan, C., and Oost, W. A.: The Roughness of Wind Waves, Bound.-Lay. Meteorol., 54, 89–103, https://doi.org/10.1007/BF00119414, 1991.
Mauder, M. and Foken, T.: Documentation and Instruction Manual of the
Eddy-Covariance Software Package TK3, Arbeitsergebnisse, zenodo,
https://doi.org/10.5281/zenodo.20349, 2011.
McMillen, R. T.: An eddy correlation technique with extended applicability to non-simple terrain, Bound.-Lay. Meteorol., 43, 231–245, https://doi.org/10.1007/BF00128405, 1988.
Olabarrieta, M., Warner, J. C., Armstrong, B., Zambon, J. B., and He, R.:
Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system, Ocean Model., 43–44, 112–137, https://doi.org/10.1016/j.ocemod.2011.12.008,
2012.
Oost, W. A., Komen, G. J., Jacobs, C. M. J., and Van Oort, C.: New evidence
for a relation between wind stress and wave age from measurements during
ASGAMAGE, Bound.-Lay. Meteorol., 103, 409–438, https://doi.org/10.1023/A:1014913624535, 2002.
Rizza, U., Canepa, E., Ricchi, A., Bonaldo, D., Carniel, S., Morichetti, M.,
Passerini, G., Santiloni, L., Puhales, F. S., and Miglietta, M. M.: Influence
of wave state and sea spray on the roughness length: Feedback on medicanes,
Atmosphere, 9, 301, https://doi.org/10.3390/atmos9080301, 2018.
Shi, L., Olabarrieta, M., Valle-Levinson, A., and Warner, J. C.: Relevance of wind stress and wave-dependent ocean surface roughness on the generation of winter meteotsunamis in the Northern Gulf of Mexico, Ocean Model., 140, 101408, https://doi.org/10.1016/j.ocemod.2019.101408, 2019.
Smith, S. D., Anderson, R. J., Oost, W. A., Kraan, C., Maat, N., De Cosmo,
J., Katsaros, K. B., Davidson, K. L., Bumke, K., Hasse, L., and Chadwick, H.
M.: Wind Stress and Drag Coefficients, Bound.-Lay. Meteorol., 60, 109–142, https://doi.org/10.1007/BF00122064, 1992.
Taylor, P. K. and Yelland, M. J.: The dependence of sea surface roughness on the height and steepness of the waves, J. Phys. Oceanogr., 31, 572–590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2, 2001.
Torma, P. and Krámer, T.: Modeling the Effect of Waves on the Diurnal
Temperature Stratification of a Shallow Lake, Period. Polytech. Civ. Eng., 61, 165–175, https://doi.org/10.3311/PPci.8883, 2017a.
Torma, P. and Krámer, T.: Wind Shear Stress Interpolation over Lake Surface from Routine Weather Data Considering the IBL Development, Period.
Polytechn. Civ. Eng., 61, 14–26, https://doi.org/10.3311/PPci.9542, 2017b.
Vickers, D. and Mahrt, L.: Fetch Limited Drag Coefficients, Bound.-Lay. Meteorol., 85, 53–79, https://doi.org/10.1023/A:1000472623187, 1997.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt
correction algorithms, Bound.-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465, 2001.
Short summary
This paper proposes new relationships for momentum exchange through the air–water interface for medium size lakes. High-resolution wind and wave measurements were performed simultaneously in onshore and offshore stations in Lake Balaton. Our results show that the surface drag is remarkably higher compared to open ocean conditions due to the very young wave state which is a typical feature of midsize freshwater lakes.
This paper proposes new relationships for momentum exchange through the air–water interface for...