HARMONIE-AROME single-column tools and experiments
Met Éireann, Glasnevin Hill, Dublin 9, D09 Y921, Ireland
Stephen Outten
Nansen Environmental and Remote Sensing Centre, Thormøhlens gate 47, 5006, Bergen, Norway
Bjørg Jenny Kokkvoll Engdahl
Norwegian Meteorological Institute, P.O. Box 43, Blindern 0313, Oslo, Norway
Eoin Whelan
Met Éireann, Glasnevin Hill, Dublin 9, D09 Y921, Ireland
Ulf Andrae
Swedish Meteorological Hydrological Institute, 60176 Norrköping, Sweden
Laura Rontu
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Eoghan Keany, Geoffrey Bessardon, and Emily Gleeson
Adv. Sci. Res., 19, 13–27, https://doi.org/10.5194/asr-19-13-2022, https://doi.org/10.5194/asr-19-13-2022, 2022
Short summary
Short summary
This work used machine learning to produce the first open source building height map of Ireland. This map is intended to more accurately determine Local Climate Zones for use in the underlying physiography dataset in the HARMONIE AROME numerical weather prediction model.
Eoin Walsh, Geoffrey Bessardon, Emily Gleeson, and Priit Ulmas
Adv. Sci. Res., 18, 65–87, https://doi.org/10.5194/asr-18-65-2021, https://doi.org/10.5194/asr-18-65-2021, 2021
Short summary
Short summary
In this work, machine learning techniques, satellite data and land-cover data were used to produce a land-cover map for Ireland that shows greater accuracy and resolution than an altered version of the standard land-cover map (ECOCLIMAP-SG) used for numerical weather prediction. This method offers a way to universally improve meteorological land-cover maps across jurisdictions, while also offering a method of updating the map regularly to account for seasonal changes in surface land-covers.
Lise Seland Graff, Jerry Tjiputra, Ada Gjermundsen, Andreas Born, Jens Boldingh Debernard, Heiko Goelzer, Yan-Chun He, Petra Margaretha Langebroek, Aleksi Nummelin, Dirk Olivié, Øyvind Seland, Trude Storelvmo, Mats Bentsen, Chuncheng Guo, Andrea Rosendahl, Dandan Tao, Thomas Toniazzo, Camille Li, Stephen Outten, and Michael Schulz
Earth Syst. Dynam., 16, 1671–1698, https://doi.org/10.5194/esd-16-1671-2025, https://doi.org/10.5194/esd-16-1671-2025, 2025
Short summary
Short summary
The magnitude of future Arctic amplification is highly uncertain. Using the Norwegian Earth System Model, we explore the effect of improving the representation of clouds, ocean eddies, the Greenland ice sheet, sea ice, and ozone on the projected Arctic winter warming in a coordinated experiment set. These improvements all lead to enhanced projected Arctic warming, with the largest changes found in the sea ice retreat regions and the largest uncertainty found on the Atlantic side.
Stephen Outten and Richard Davy
Weather Clim. Dynam., 5, 753–762, https://doi.org/10.5194/wcd-5-753-2024, https://doi.org/10.5194/wcd-5-753-2024, 2024
Short summary
Short summary
The North Atlantic Oscillation is linked to wintertime weather events over Europe. One feature often overlooked is how much the climate variability explained by the NAO has changed over time. We show that there has been a considerable increase in the percentage variance explained by the NAO over the 20th century and that this is not reproduced by 50 CMIP6 climate models, which are generally biased too high. This has implications for projections and prediction of weather events in the region.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Eoghan Keany, Geoffrey Bessardon, and Emily Gleeson
Adv. Sci. Res., 19, 13–27, https://doi.org/10.5194/asr-19-13-2022, https://doi.org/10.5194/asr-19-13-2022, 2022
Short summary
Short summary
This work used machine learning to produce the first open source building height map of Ireland. This map is intended to more accurately determine Local Climate Zones for use in the underlying physiography dataset in the HARMONIE AROME numerical weather prediction model.
Clio Michel, Erica Madonna, Clemens Spensberger, Camille Li, and Stephen Outten
Weather Clim. Dynam., 2, 1131–1148, https://doi.org/10.5194/wcd-2-1131-2021, https://doi.org/10.5194/wcd-2-1131-2021, 2021
Short summary
Short summary
Climate models still struggle to correctly represent blocking frequency over the North Atlantic–European domain. This study makes use of five large ensembles of climate simulations and the ERA-Interim reanalyses to investigate the Greenland blocking frequency and one of its drivers, namely cyclonic Rossby wave breaking. We particularly try to understand the discrepancies between two specific models, out of the five, that behave differently.
Eoin Walsh, Geoffrey Bessardon, Emily Gleeson, and Priit Ulmas
Adv. Sci. Res., 18, 65–87, https://doi.org/10.5194/asr-18-65-2021, https://doi.org/10.5194/asr-18-65-2021, 2021
Short summary
Short summary
In this work, machine learning techniques, satellite data and land-cover data were used to produce a land-cover map for Ireland that shows greater accuracy and resolution than an altered version of the standard land-cover map (ECOCLIMAP-SG) used for numerical weather prediction. This method offers a way to universally improve meteorological land-cover maps across jurisdictions, while also offering a method of updating the map regularly to account for seasonal changes in surface land-covers.
Cited articles
AROME: 2008 – 2nd AROME Training Course, available at:
http://www.umr-cnrm.fr/gmapdoc/spip.php?rubrique64 (last access: 14 November 2020), 2008. a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I.,
Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The HARMONIE-AROME Model Configuration in the
ALADIN-HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a, b
Bosveld, F., Baas, P., Steeneveld, G., Holtslag, A., Angevine, W., Bazile, E., de Bruijn, E., Deacu, D., Edwards, J., Ek, M., Larson, V., Pleim, J.,
Raschendorfer, M., and Svensson, G.: The Third GABLS Intercomparison Case for
Evaluation Studies of Boundary-Layer Models. Part B: Results and Process
Understanding, Bound.-Lay. Meteorol., 152, 157–187, https://doi.org/10.1007/s10546-014-9919-1, 2014. a
Cohard, J.-M. and Pinty, J.-P.: A comprehensive two-moment warm microphysical
bulk scheme. I: Description and tests, Q. J. Roy. Meteorol. Soc., 126, 1815–1842, https://doi.org/10.1002/qj.49712656613, 2000a. a, b
Cohard, J.-M. and Pinty, J.-P.: A comprehensive two-moment warm microphysical
bulk scheme. II: 2D experiments with a non-hydrostatic model, Q. J. Roy. Meteorol. Soc., 126, 1843–1859, https://doi.org/10.1002/qj.49712656614, 2000b. a, b
Copernicus: Copernicus Atmosphere Monitoring Service (CAMS) Data, available at: https://atmosphere.copernicus.eu/data, last access: 14 November 2020. a
Cuxart, J., Holtslag, A. A. M., Beare, R. J., Bazile, E. B. A., Cheng, A.,
L. C., Ek, M., Freedman, F., Hamdi, R. K. A., Kitagawa, H., Lenderink, G.,
Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld,
G.-J., Svensson, G., Taylor, P., Weng, W., Wunsch, S., and Xu, K.-M.:
Single-Column Model Intercomparison for a Stably Stratified Atmospheric
Boundary Layer, Bound.-Lay. Meteorol., 118, 273–303, https://doi.org/10.1007/s10546-005-3780-1, 2006. a
ECMWF: ECMWF IFS documentation Chapter 2, available at:
http://www.ecmwf.int/sites/default/files/elibrary/2015/9211-part-iv-physical-processes.pdf
(last access: 14 November 2020), 2015. a
ECMWF-ecCodes: ecCodes Home, available at:
https://confluence.ecmwf.int/display/ECC (last access: 14 November 2020), 2019. a
Engdahl, B. J. K., Nygaard, B. E. K., Losnedal, V., Thompson, G., and
Bengtsson, L.: Effects of the ICE-T microphysics scheme in HARMONIE-AROME on
estimated ice loads on transmission lines, Cold Reg. Sci. Technol. 179, 103139, https://doi.org/10.1016/j.coldregions.2020.103139, 2020a. a, b
Firl, G., Carso, L., Bernardet, L., and Heinzeller, D.: Global Model Test Bed
Single Column Model (SCM) User and Technical Guide v3.0, Tech. rep., National
Center for Atmospheric Research and Developmental Testbed Center, NOAA/ESRL
Global Systems Division, Developmental Testbed Center and CIRES/CU, available at: https://dtcenter.org/sites/default/files/community-code/ccpp/GMTB/scm-ccpp-guide-v4.0.pdf (last access: 14 November 2020), 2019. a
Frogner, I.-L., Andrae, U., Bojarova, J., Callado, A., Escribà, P., Feddersen, H., Hally, A., Kauhanen, J., Randriamampianina, R., Singleton, A., Smet, G., van der Veen, S., and Vignes, O.: HarmonEPS – The HARMONIE Ensemble Prediction System, Weather Forecast., 34, 1909–1937,
https://doi.org/10.1175/WAF-D-19-0030.1, 2019. a, b
Geleyn, J.-F., Mašek, J., Brožková, R., Kuma, P., Degrauwe, D., Hello, G., and Pristov, N.: Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing, Q. J. Roy. Meteorol. Soc., 143, 1313–1335, https://doi.org/10.1002/qj.3006, 2017. a
Gleeson, E., Toll, V., Nielsen, K. P., Rontu, L., and Mašek, J.: Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system,
Atmos. Chem. Phys., 16, 5933–5948, https://doi.org/10.5194/acp-16-5933-2016, 2016. a, b, c, d
HIRLAM: Post processing with gl_grib_api, available at:
https://hirlam.org/trac/wiki/HarmonieSystemDocumentation/PostPP/gl_grib_api
(last access: 14 November 2020), 2019. a
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A.,
Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J.,
Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch,
V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS
reanalysis of atmospheric composition, Atmo. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019. a
Koski, H.: Weather models developed through cloud computing, available at:
https://www.csc.fi/en/web/atcsc/-/pilvilaskenta-avuksi-saamallien-kehitykseen
(last access: 14 November 2020), 2017. a
Le Moigne, P.: SURFEX Scientific Documentation, Tech. rep., available at: https://www.umr-cnrm.fr/surfex/IMG/pdf/surfex_scidoc_v8.1.pdf (last access: 14 November 2020), 2018. a
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the
Snow Field in a Cloud Model, J. Clim. Appl. Meteorol., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983. a, b
Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., and Dudhia, J.:
High-Resolution Simulations of Wintertime Precipitation in the Colorado
Headwaters Region: Sensitivity to Physics Parameterizations, Mon. Weather Rev., 139, 3533–3553, https://doi.org/10.1175/MWR-D-11-00009.1, 2011. a
Mašek, J., Geleyn, J.-F., Brožková, R., Giot, O., Achom, H. O., and Kuma, P.: Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps, Q. J. Roy. Meteorol. Soc., 142, 304–326, https://doi.org/10.1002/qj.2653, 2016. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a
Mottram, R., Nielsen, K. P., Gleeson, E., and Yang, X.: Modelling Glaciers in
the HARMONIE-AROME NWP model, Adv. Sci. Res., 14, 323–334, https://doi.org/10.5194/asr-14-323-2017, 2017. a
MUSC: Hirlam-B working days on HARMONIE-MUSC, available at: http://netfam.fmi.fi/muscwd11/ (last access: 14 November 2020), 2011a. a
MUSC: Hirlam-B working days on HARMONIE-MUSC – Presentations, available at:
http://netfam.fmi.fi/muscwd11/Agenda.html (last access: 14 November 2020), 2011b. a
Neggers, R. and Siebesma, A.: The KNMI Parametrization Testbed User's Guide
Version 2, unpublished, 2010. a
Neggers, R. A. J., Ackerman, A. S., Angevine, W. M., Bazile, E., Beau, I.,
Blossey, P. N., Boutle, I. A., de Bruijn, C., Cheng, A., van der Dussen, J.,
Fletcher, J., Dal Gesso, S., Jam, A., Kawai, H., Cheedela, S. K., Larson, V. E., Lefebvre, M.-P., Lock, A. P., Meyer, N. R., de Roode, S. R., de Rooy, W., Sandu, I., Xiao, H., and Xu, K.-M.: Single-Column Model Simulations of
Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions, J. Adv. Model. Earth Syst., 9, 2385–2412,
https://doi.org/10.1002/2017MS001064, 2017. a
Nielsen, K. P., Gleeson, E., and Rontu, L.: Radiation sensitivity tests of the HARMONIE 37h1 NWP model, Geosci. Model Dev., 7, 1433–1449,
https://doi.org/10.5194/gmd-7-1433-2014, 2014. a
Rontu, L., Gleeson, E., Räisänen, P., Pagh Nielsen, K., Savijärvi, H., and Hansen Sass, B.: The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models, Adv. Sci. Res., 14, 195–215,
https://doi.org/10.5194/asr-14-195-2017, 2017. a
Stoelinga, M. T., Hobbs, P. V., Mass, C. F., Locatelli, J. D., Colle, B. A.,
Houze, R. A., Rangno, A. L., Bond, N. A., Smull, B. F., Rasmussen, R. M.,
Thompson, G., and Colman, B. R.: Improvement of Microphysical Parameterization through Observational Verification Experiment, B. Am. Meteorol. Soc., 84, 1807–1826, https://doi.org/10.1175/BAMS-84-12-1807, 2003. a
Svensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., Bazile, E., Beljaars, A., de Bruijn, E. I. F., Cheng, A., Conangla, L., Cuxart, J., Ek, M., Falk, M. J., Freedman, F., Kitagawa, H., Larson, V. E., Lock, A., Mailhot, J., Masson, V., Park, S., Pleim, J., Söderberg, S., Weng, W., and Zampieri, M.: Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment, Bound.-Lay. Meteorol., 140, 177–206, https://doi.org/10.1007/s10546-011-9611-7, 2011. a
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R.,
Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R.,
Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y.,
Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME
CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281,
https://doi.org/10.5194/gmd-11-257-2018, 2018. a, b
Thompson, G. and Eidhammer, T.: A Study of Aerosol Impacts on Clouds and
Precipitation Development in a Large Winter Cyclone, J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014. a
Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit Forecasts of Winter
Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description
and Sensitivity Analysis, Mon. Weather Rev., 132, 519–542,
https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2, 2004. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme.
Part II: Implementation of a New Snow Parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008. a, b
Vignon, E., Hourdin, F., Genthon, C., Gallée, H., Bazile, E., Lefebvre, M.-P., Madeleine, J.-B., and Van de Wiel, B. J. H.: Antarctic boundary layer
parametrization in a general circulation model: 1-D simulations facing summer
observations at Dome C, J. Geophys. Res.-Atmos., 122, 6818–6843, https://doi.org/10.1002/2017JD026802, 2017.
a
Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M.,
Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J.,
Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K. D.: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations, Geosci. Model Dev., 4, 919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011. a
Short summary
The single-column version of the shared ALADIN-HIRLAM numerical weather prediction system, called MUSC, was developed by Météo-France in the 2000s and has a growing user-base. Tools to derive the required input, to run experiments and to handle outputs have been developed within the HARMONIE-AROME configuration of the ALADIN-HIRLAM system. We also illustrate the usefulness of MUSC for testing and developing physical parametrizations related to cloud microphysics and radiative transfer.
The single-column version of the shared ALADIN-HIRLAM numerical weather prediction system,...