Articles | Volume 17
https://doi.org/10.5194/asr-17-53-2020
https://doi.org/10.5194/asr-17-53-2020
12 Jun 2020
 | 12 Jun 2020

Numerical modelling of the wind over forests: roughness versus canopy drag

Andrey Sogachev, Dalibor Cavar, Mark Kelly, Ebba Dellwik, Tobias Klaas, and Paul Kühn

Related authors

Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest
L. Zhou, R. Gierens, A. Sogachev, D. Mogensen, J. Ortega, J. N. Smith, P. C. Harley, A. J. Prenni, E. J. T. Levin, A. Turnipseed, A. Rusanen, S. Smolander, A. B. Guenther, M. Kulmala, T. Karl, and M. Boy
Atmos. Chem. Phys., 15, 8643–8656, https://doi.org/10.5194/acp-15-8643-2015,https://doi.org/10.5194/acp-15-8643-2015, 2015
Simulations of atmospheric OH, O3 and NO3 reactivities within and above the boreal forest
D. Mogensen, R. Gierens, J. N. Crowley, P. Keronen, S. Smolander, A. Sogachev, A. C. Nölscher, L. Zhou, M. Kulmala, M. J. Tang, J. Williams, and M. Boy
Atmos. Chem. Phys., 15, 3909–3932, https://doi.org/10.5194/acp-15-3909-2015,https://doi.org/10.5194/acp-15-3909-2015, 2015
The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany
B. Bonn, E. Bourtsoukidis, T. S. Sun, H. Bingemer, L. Rondo, U. Javed, J. Li, R. Axinte, X. Li, T. Brauers, H. Sonderfeld, R. Koppmann, A. Sogachev, S. Jacobi, and D. V. Spracklen
Atmos. Chem. Phys., 14, 10823–10843, https://doi.org/10.5194/acp-14-10823-2014,https://doi.org/10.5194/acp-14-10823-2014, 2014

Cited articles

Bingöl, F.: Complex Terrain and Wind Lidars. Roskilde, Risø National Laboratory for Sustainable Energy, Risø-PhD, No. 52(EN), 60 pp., 2010. 
Blackadar, A. K. and Tennekes, H.: Asymptotic similarity in neutral barotropic planetary boundary layers, J. Atmos. Sci., 25, 1015–20, https://doi.org/10.1175/1520-0469(1968)025<1015:ASINBP>2.0.CO;2, 1968. 
Boudreault, L.-E.: Reynolds-averaged Navier-Stokes and Large-Eddy Simulation over and inside inhomogeneous forests, DTU Wind Energy, PhD-0042 (EN), 118 pp., 2015. 
Boudreault, L.-É., Bechmann, A., Tarvainen, L., Klemedtsson, L., Shendryk, I., and Dellwik, E.: A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests, Agr. Forest Meteorol., 201, 86–97, https://doi.org/10.1016/j.agrformet.2014.10.014, 2015. 
Clarke, R. H. and Hess, G. D.: Geostrophic departure and the functions A and B of Rossby-number similarity theory, Bound.-Lay. Meteorol., 7, 261–287, https://doi.org/10.1007/BF00240832, 1974. 
Download
Short summary
Recently an objective method was suggested to translate realistic vegetation characteristics into spatially varying values of effective roughness. This parameter allows prediction of wind flow over vegetation using models, without incorporating local drag forces in each grid volume of a three-dimensional model domain. Results of the flow simulations over different forested sites show that an approach based on a roughness representation of forest is appropriate only for the flat terrain.