C3S – Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS),
https://doi.org/10.24381/cds.adbb2d47, 2017.
a,
b
Enedis: Production électrique annuelle par filière à la maille commune, available at:
https://data.enedis.fr/explore/dataset/production-electrique-par-filiere-a-la-maille-commune/information/, last access: 30 January 2020. a
ERA5 data documentation: Known issues, available at:
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Knownissues, last access: 10 May 2020. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: MERRA-2 Overview: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
a
GMAO – Global Modeling and Assimilation Office: MERRA-2 inst1_2d_int_Nx: 2d,1-Hourly, Instantaneous, Single-Level, Assimilation, Vertically Integrated Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA,
https://doi.org/10.5067/G0U6NGQ3BLE0, 2015.
a
Gonzales-Aparicio, G., Zucker, A., Careri, F., Monforti, F., Huld, T., and Badger, J.: EMHIRES dataset. Part I: Wind power generation European Meteorological derived HIgh resolution RES generation time series for present and future scenarios, EUR 28171 EN,
https://doi.org/10.2790/831549, 2016.
a
Gruber, K. and Schmidt, J.: Bias-correcting simulated wind power in Austria and in Brazil from the ERA-5 reanalysis data set with the DTU Wind Atlas, in: IEWT, 13–15 February 2019, Vienna, Austria, 2019. a
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Bouniol, D., Chepfer, H., Chiriaco, M., Cuesta, J., Delanoë, J., Drobinski, P., Dufresne, J.-L., Flamant, C., Grall, M., Hodzic, A., Hourdin, F., Lapouge, F., Lemaître, Y., Mathieu, A., Morille, Y., Naud, C., Noël, V., O'Hirok, W., Pelon, J., Pietras, C., Protat, A., Romand, B., Scialom, G., and Vautard, R.: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Ann. Geophys., 23, 253–275,
https://doi.org/10.5194/angeo-23-253-2005, 2005.
a,
b
Heppelmann, T., Steiner, A., and Vogt, S.: Application of numerical weather prediction in wind power forecasting: Assessment of the diurnal cycle, Meteorol. Z., 26, 319–331,
https://doi.org/10.1127/metz/2017/0820, 2017.
a
Kaiser-Weiss, A. K., Kaspar, F., Heene, V., Borsche, M., Tan, D. G. H., Poli, P., Obregon, A., and Gregow, H.: Comparison of regional and global reanalysis near-surface winds with station observations over Germany, Adv. Sci. Res., 12, 187–198,
https://doi.org/10.5194/asr-12-187-2015, 2015.
a
Lledó, Ll., Torralba, V., Soret, A., Ramon, J., and Doblas-Reyes, F. J.: Seasonal forecasts of wind power generation, Renew. Energ., 143, 91–100,
https://doi.org/10.1016/j.renene.2019.04.135, 2019.
a,
b
Météo-France: Données de modèle atmosphérique à aire limitée à haute résolution, available at:
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=51, last access: 20 January 2020. a
Ministère de la Transition écologique et solidaire: Synthèse de la programmation pluriannuelle de l'énergie, available at:
https://www.ecologique-solidaire.gouv.fr/sites/default/files/20200422 Synthe%CC%80se de la PPE.pdf, last access: 10 May 2020. a
Monforti, F. and Gonzalez-Aparicio, I.: Comparing the impact of uncertainties on technical and meteorological parameters in wind power time series modelling in the European Union, Appl. Energy, 206, 439–450, 2017. a
NEWA consortium: NEWA mesoscale data, available at:
https://www.neweuropeanwindatlas.eu/, last access: 20 January 2020.
a,
b
Olsen, B. T., Hahmann, A., Žagar, M., Hristov, Y., Mann, J., Kelly, M. and Badger, J.: Mapping the European wind climate: validation of the New European Wind Atlas, in: EMS Annual Meeting 2019, 9–13 September 2019, Lyngby, Denmark, EMS2019-757-2, 2019.
a,
b,
c
Paraschiv, F., Erni, D., and Pietsch, R.: The impact of renewable energies on EEX day-ahead electricity prices, Energy Policy, 73, 196–210,
https://doi.org/10.1016/j.enpol.2014.05.004, 2014.
a
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas‐Reyes, F. J.: What global reanalysis best represents near‐surface winds?, Q. J. Roy. Meteorol. Soc., 145, 3236–3251,
https://doi.org/10.1002/qj.3616, 2019.
a
Ramon, J., Lledó, L., Pérez-Zanón, N., Soret, A., and Doblas-Reyes, F. J.: The Tall Tower Dataset: a unique initiative to boost wind energy research, Earth Syst. Sci. Data, 12, 429–439,
https://doi.org/10.5194/essd-12-429-2020, 2020.
a
RTE: Analyses mensuelles, available at:
https://www.rte-france.com/fr/eco2mix/analyses-mensuelles (last access: 10 January 2020), 2020a. a
RTE: Données en puissances – Annuel définitif, available at:
https://www.rte-france.com/fr/eco2mix/eco2mix-telechargement (last access: 30 January 2020), 2020b. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational Model, Mon. Weather Rev., 139, 976–991,
https://doi.org/10.1175/2010MWR3425.1, 2011.
a
Silva, V., López-Botet Zulueta, M., Wang, Y., Fourment, P., Hinchliffe, T., Burtin, A., and Gatti-Bono, C.: Anticipating Some of the Challenges and Solutions for 60 % Renewable Energy Sources in the European Electricity System, in: Renewable Energy: Forecasting and Risk Management, Springer Proceedings in Mathematics & Statistics, vol. 254, edited by: Drobinski, P., Mougeot, M., Picard, D., Plougonven, R., and Tankov, P., Springer, Cham,
https://doi.org/10.1007/978-3-319-99052-1_9, 2017.
a
Staffell, I. and Pfenninger, S.: Using bias-corrected reanalysis to simulate current and future wind power output, Energy, 114, 1224–1239,
https://doi.org/10.1016/j.energy.2016.08.068, 2016.
a,
b,
c,
d,
e
Troccoli, A., Goodess, C., Jones, P., Penny, L., Dorling, S., Harpham, C., Dubus, L., Parey, S., Claudel, S., Khong, D.-H., Bett, P. E., Thornton, H., Ranchin, T., Wald, L., Saint-Drenan, Y.-M., De Felice, M., Brayshaw, D., Suckling, E., Percy, B., and Blower, J.: Creating a proof-of-concept climate service to assess future renewable energy mixes in Europe: An overview of the C3S ECEM project, Adv. Sci. Res., 15, 191–205,
https://doi.org/10.5194/asr-15-191-2018, 2018.
a,
b
TWP – The Wind Power: Wind energy database, available at:
http://www.thewindpower.net, last access: 10 January 2020. a
UERRA: Uncertainties in Ensembles of Regional ReAnalyses (UERRA) project home page, available at:
http://www.uerra.eu/, last access: 10 May 2020. a
Vortex: Vortex ERA5 downscaling: validation results, Validation report, 11 pp., available at:
http://www.vortexfdc.com/assets/docs/validation_ERA5.pdf (last access: 8 January 2020), 2017. a
Witha, B., Hahmann, A., Sile, T., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Leroy, G., and Navarro, J.: Report on WRF model sensitivity studies and specifications for the mesoscale wind atlas production runs. Deliverable D4.3, Zenodo,
https://doi.org/10.5281/zenodo.2682604, 2019.
a