Raindrop fall velocity in turbulent flow: an observational study
Merhala Thurai
CORRESPONDING AUTHOR
Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, Colorado, USA
Viswanathan Bringi
Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, Colorado, USA
Patrick Gatlin
NASA Marshall Space Flight Center, Huntsville, Alabama, USA
Mathew Wingo
Earth System Science Center, University of Alabama, Huntsville, USA
Related authors
Viswanathan Bringi, Kumar Vijay Mishra, Merhala Thurai, Patrick C. Kennedy, and Timothy H. Raupach
Atmos. Meas. Tech., 13, 4727–4750, https://doi.org/10.5194/amt-13-4727-2020, https://doi.org/10.5194/amt-13-4727-2020, 2020
Short summary
Short summary
The raindrop size distribution and its moments are fundamental in many areas, such as radar measurement of rainfall using polarimetry and numerical modeling of the microphysical processes of rain formation and evolution. We develop a technique which uses advanced radar measurements and complete drop size distributions using two collocated instruments to retrieve the lower-order moments such as total drop concentration and rain water content. We demonstrate a proof-of-concept using a case study.
Merhala Thurai, Michael Schönhuber, Günter Lammer, and Viswanathan Bringi
Adv. Sci. Res., 16, 95–101, https://doi.org/10.5194/asr-16-95-2019, https://doi.org/10.5194/asr-16-95-2019, 2019
Short summary
Short summary
Raindrop shapes and fall velocities are presented for two high-wind/turbulent events. Results show strong gusts, directional wind shifts and/or inferred high turbulence intensity are correlated with reduced fall speeds, reaching values ~ 25–30 % less than the expected values, i.e. sub-terminal fall speeds. Significant percentage of asymmetric drops deviating from the most probable ax-isymmetric shapes was also detected during high turbulent intensities.
Viswanathan Bringi, Merhala Thurai, and Darrel Baumgardner
Atmos. Meas. Tech., 11, 1377–1384, https://doi.org/10.5194/amt-11-1377-2018, https://doi.org/10.5194/amt-11-1377-2018, 2018
Short summary
Short summary
Raindrop fall velocities are important for rain rate estimation, soil erosion studies and in numerical modelling of rain formation in clouds. The assumption that the fall velocity is uniquely related to drop size is made inherently based on laboratory measurements under still air conditions from nearly 68 years ago. There have been very few measurements of drop fall speeds in natural rain under both still and turbulent wind conditions. We report on fall speed measurements in natural rain shafts.
Viswanathan Bringi, Kumar Vijay Mishra, Merhala Thurai, Patrick C. Kennedy, and Timothy H. Raupach
Atmos. Meas. Tech., 13, 4727–4750, https://doi.org/10.5194/amt-13-4727-2020, https://doi.org/10.5194/amt-13-4727-2020, 2020
Short summary
Short summary
The raindrop size distribution and its moments are fundamental in many areas, such as radar measurement of rainfall using polarimetry and numerical modeling of the microphysical processes of rain formation and evolution. We develop a technique which uses advanced radar measurements and complete drop size distributions using two collocated instruments to retrieve the lower-order moments such as total drop concentration and rain water content. We demonstrate a proof-of-concept using a case study.
Merhala Thurai, Michael Schönhuber, Günter Lammer, and Viswanathan Bringi
Adv. Sci. Res., 16, 95–101, https://doi.org/10.5194/asr-16-95-2019, https://doi.org/10.5194/asr-16-95-2019, 2019
Short summary
Short summary
Raindrop shapes and fall velocities are presented for two high-wind/turbulent events. Results show strong gusts, directional wind shifts and/or inferred high turbulence intensity are correlated with reduced fall speeds, reaching values ~ 25–30 % less than the expected values, i.e. sub-terminal fall speeds. Significant percentage of asymmetric drops deviating from the most probable ax-isymmetric shapes was also detected during high turbulent intensities.
Viswanathan Bringi, Merhala Thurai, and Darrel Baumgardner
Atmos. Meas. Tech., 11, 1377–1384, https://doi.org/10.5194/amt-11-1377-2018, https://doi.org/10.5194/amt-11-1377-2018, 2018
Short summary
Short summary
Raindrop fall velocities are important for rain rate estimation, soil erosion studies and in numerical modelling of rain formation in clouds. The assumption that the fall velocity is uniquely related to drop size is made inherently based on laboratory measurements under still air conditions from nearly 68 years ago. There have been very few measurements of drop fall speeds in natural rain under both still and turbulent wind conditions. We report on fall speed measurements in natural rain shafts.
N. Roberto, E. Adirosi, L. Baldini, D. Casella, S. Dietrich, P. Gatlin, G. Panegrossi, M. Petracca, P. Sanò, and A. Tokay
Atmos. Meas. Tech., 9, 535–552, https://doi.org/10.5194/amt-9-535-2016, https://doi.org/10.5194/amt-9-535-2016, 2016
Short summary
Short summary
This study examines various microphysical properties of liquid and solid hydrometeors to investigate their relationship with lightning activity. Measurements were collected from the Polar 55C dual-polarization radar, a 2-DVD, and LINET. From the analysis of three significant case studies, linear relations between the total mass of graupel and the number of strokes were found. Results point out the key role of ice mass in determining the electrical charging of convective clouds.
Cited articles
Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys. Space Phys., 2, 1–35, 1973.
Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops
aloft, J. Atmos. Sci., 33, 851–864,
https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2, 1976.
Bringi, V. N., Thurai, M., and Baumgardner, D.: Raindrop fall velocities
from an optical array probe and 2-D video disdrometer, Atmos. Meas. Tech.,
11, 1377–1384, https://doi.org/10.5194/amt-11-1377-2018, 2018.
Fitch, K. E., Hang, C., Talaei, A., and Garrett, T. J.: Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements, Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, 2021.
Fornari, W., Picano, F., Sardina, G., and Brandt, L.: Reduced particle
settling speed in turbulence, J. Fluid Mech., 808, 153–167,
https://doi.org/10.1017/jfm.2016.648, 2016.
Garrett, T. J. and Yuter, S. E.: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation, Geophys. Res. Let., 41, 6515–6522, 2014.
Good, G. H., Ireland, P. J., Bewley, G. P., Bodenschatz, E., Collins, L. R.,
and Warhaft, Z.: Settling regimes of inertial particles in isotropic turbulence, J. Fluid Mech., 759, R3, https://doi.org/10.1017/jfm.2014.602, 2014.
Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson,
P. O. G.: The Critical Richardson Number and Limits of Applicability of
Local Similarity Theory in the Stable Boundary Layer, Bound.-Lay. Meteorol., 147, 51–82, 2013.
Gunn, R. and Kinzer, G. D.: The terminal velocity of fall for water droplets
in stagnant air, J. Meteorol., 6, 243–248,
https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2, 1949.
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their
structure and measurement, Oxford University Press, New York, 289 pp., 1994.
Larsen, M. L., Kostinski, A. B., and Jameson, A. R.: Further evidence for
super terminal drops, Geophys. Res. Lett., 41, 6914–6918,
https://doi.org/10.1002/2014GL061397, 2014.
McFarquhar, G.: The effect of raindrop clustering on collision-induced break-up of raindrops, Q. J. Roy. Meteorol. Soc., 130, 2169–2190, 2004.
Montero-Martinez, G. and Garcia-Garcia, F.: On the behavior of raindrop fall
speed due to wind, Q. J. Roy. Meteorol. Soc., 142, 2794, https://doi.org/10.1002/qj.2794, 2016.
Montero-Martinez, G., Kostinski, A. B., Shaw, R. A., and Garcia-Garcia, F.:
Do all raindrops fall at terminal speed?, Geophys. Res. Lett., 36, L11818,
https://doi.org/10.1029/2008GL037111, 2009.
Morrison, H. and Grabowski, W.: Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework, J. Atmos. Sci., 64, 2839–2861, 2006.
Nemes, A., Dasari, T., Hong, J., Guala, M., and Coletti, F.: Snowflakes in
the atmospheric surface layer: observation of particle–turbulence dynamics,
J. Fluid Mech., 814, 592–613, 2017.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed, B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.
Ren, W., Reutzsch, J., and Weigand, B.: Direct Numerical Simulation of Water Droplets in Turbulent Flow, Fluids, 5, 158, https://doi.org/10.3390/fluids5030158, 2020.
Schönhuber, M., Lammer, G., and Randeu, W. L.: One decade of imaging
precipitation measurement by 2D-video-distrometer, Adv. Geosci., 10, 85–90,
https://doi.org/10.5194/adgeo-10-85-2007, 2007.
Schönhuber, M., Lammar, G., and Randeu, W. L.: The 2-D-videodistrometer,
in: Precipitation: Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S. C., Springer, Berlin, Heidelberg, Germany, 3–31, 2008.
Stout, J. E., Arya, S. P., and Genikhovich, E. L.: The effect of nonlinear
drag on the motion and settling velocity of heavy particles, J. Atmos. Sci.,
52, 3836–3848, https://doi.org/10.1175/1520-0469(1995)052<3836:TEONDO>2.0.CO;2, 1995.
Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S.: Shapes and
oscillations of falling raindrops – A review, Atmos. Res., 97, 416–425,
https://doi.org/10.1016/j.atmosres.2010.03.024, 2010.
Thériault, J. M., Rasmussen, R., Petro, E., Trépanier, J., Colli, M., and Lanza, L. G.: Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection Efficiency of the Double Fence Intercomparison Reference, J. Appl. Meteorol. Clim., 54, 1918–1930, 2015.
Thurai, M., Bringi, V. N., Petersen, W. A., and Gatlin, P. N.: Drop shapes
and fall speeds in rain: Two contrasting examples, J. Appl. Meteorol. Clim., 52, 2567–2581, https://doi.org/10.1175/JAMC-D-12-085.1, 2013.
Thurai, M., Schönhuber, M., Lammer, G., and Bringi, V.: Raindrop shapes
and fall velocities in “turbulent times”, Adv. Sci. Res., 16, 95–101,
https://doi.org/10.5194/asr-16-95-2019, 2019.
Wang, L. and Maxey, M.: Settling velocity and concentration distribution of
heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., 256, 27–68, https://doi.org/10.1017/S0022112093002708, 1993.
Williams, C. R. and Gage, K. S.: Raindrop size distribution variability estimated using ensemble statistics, Ann. Geophys., 27, 555–567, https://doi.org/10.5194/angeo-27-555-2009, 2009.
Yu, C.-K., Hsieh, P.-R., Yuter, S. E., Cheng, L.-W., Tsai, C.-L., Lin, C.-Y., and Chen, Y.: Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications, Atmos. Meas. Tech., 9,
1755–1766, https://doi.org/10.5194/amt-9-1755-2016, 2016.
Zhang, R., Huang, J., Wang, X., Zhang, J., and Huang, F.: Effects of Precipitation on Sonic Anemometer Measurements of Turbulent Fluxes in the Atmospheric Surface Layer, J. Ocean Univ. China, 15, 389–398, https://doi.org/10.1007/s11802-016-2804-4, 2016.
Short summary
Fall velocities of rain drops are reported for 2–3 mm drop diameters for several different turbulent intensities. The fall velocities are measured by 2D video disdrometers and the turbulence intensities by 100 Hz sonic anemometer. The findings are, (i) the mean fall speed decreases with increasing turbulent intensity, and (ii) the standard deviation increases with increase in the rms of the air velocity fluctuations.
Fall velocities of rain drops are reported for 2–3 mm drop diameters for several different...