How to develop new digital knowledge transfer products for communicating strategies and new ways towards a carbon-neutral Germany
Swantje Preuschmann
CORRESPONDING AUTHOR
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Tanja Blome
CORRESPONDING AUTHOR
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Knut Görl
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Fiona Köhnke
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Bettina Steuri
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Juliane El Zohbi
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Diana Rechid
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Martin Schultz
Forschungszentrum Jülich, Jülich Supercomputing Centre (JSC),
Jülich, Germany
Jianing Sun
Forschungszentrum Jülich, Jülich Supercomputing Centre (JSC),
Jülich, Germany
Daniela Jacob
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon,
Hamburg, Germany
Related authors
No articles found.
Biplob Dey, Toke Due Sjøgren, Peeyush Khare, Georgios I. Gkatzelis, Yizhen Wu, Sindhu Vasireddy, Martin Schultz, Alexander Knohl, Riikka Rinnan, Thorsten Hohaus, and Eva Y. Pfannerstill
EGUsphere, https://doi.org/10.5194/egusphere-2025-3779, https://doi.org/10.5194/egusphere-2025-3779, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Trees release reactive gases that affect air quality and climate. We studied how these emissions from European beech and English oak change under realistic scenarios of combined and single heat and ozone stress. Heat increased emissions, while ozone reduced most of them. When stressors were combined, the effects were complex and varied by species. Machine learning identified key stress-related compounds. Our findings show that future tree stress may alter air quality and climate interactions.
Joni-Pekka Pietikäinen, Kevin Sieck, Lars Buntemeyer, Thomas Frisius, Christine Nam, Peter Hoffmann, Christina Pop, Diana Rechid, and Daniela Jacob
EGUsphere, https://doi.org/10.5194/egusphere-2025-1586, https://doi.org/10.5194/egusphere-2025-1586, 2025
Short summary
Short summary
This paper introduces REMO2020, a modernized version of the well-known and widely used REMO regional climate model. We demonstrate why REMO2020 will be our new model version for future dynamical downscaling activities. It outperforms our previous model version in many analyzed areas and is the biggest update to REMO so far. It also supports climate service needs based developments through new more modular structure.
Ramiyou Karim Mache, Sabine Schröder, Michael Langguth, Ankit Patnala, and Martin G. Schultz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1399, https://doi.org/10.5194/egusphere-2025-1399, 2025
Short summary
Short summary
The TOAR-classifier model is a data-driven tool that allows for an objective classification of air quality measuring stations as urban, rural, or suburban. Such classification is important in the analysis of air pollutant trends and regional signatures. The model is employed in the second Tropospheric Ozone Assessment Report but can also be used in other research work.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024, https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Short summary
We evaluate how winds change when humans grow or cut down forests. Our analysis draws from climate model simulations with extreme scenarios where Europe is either fully forested or covered with grass. We find that the effect of land use change on wind energy is very important: wind energy potentials are twice as high above grass as compared to forest in some locations. Our results imply that wind profile changes should be better incorporated in climate change assessments for wind energy.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
Geosci. Model Dev., 16, 7311–7337, https://doi.org/10.5194/gmd-16-7311-2023, https://doi.org/10.5194/gmd-16-7311-2023, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which simulates the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in terms of their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Dmitry V. Sein, Anton Y. Dvornikov, Stanislav D. Martyanov, William Cabos, Vladimir A. Ryabchenko, Matthias Gröger, Daniela Jacob, Alok Kumar Mishra, and Pankaj Kumar
Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, https://doi.org/10.5194/esd-13-809-2022, 2022
Short summary
Short summary
The effect of the marine biogeochemical variability upon the South Asian regional climate has been investigated. In the experiment where its full impact is activated, the average sea surface temperature is lower over most of the ocean. When the biogeochemical coupling is included, the main impacts include the enhanced phytoplankton primary production, a shallower thermocline, decreased SST and water temperature in subsurface layers.
Vanessa Reinhart, Peter Hoffmann, Diana Rechid, Jürgen Böhner, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 1735–1794, https://doi.org/10.5194/essd-14-1735-2022, https://doi.org/10.5194/essd-14-1735-2022, 2022
Short summary
Short summary
The LANDMATE plant functional type (PFT) land cover dataset for Europe 2015 (Version 1.0) is a gridded, high-resolution dataset for use in regional climate models. LANDMATE PFT is prepared using the expertise of regional climate modellers all over Europe and is easily adjustable to fit into different climate model families. We provide comprehensive spatial quality information for LANDMATE PFT, which can be used to reduce uncertainty in regional climate model simulations.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Kevin Sieck, Christine Nam, Laurens M. Bouwer, Diana Rechid, and Daniela Jacob
Earth Syst. Dynam., 12, 457–468, https://doi.org/10.5194/esd-12-457-2021, https://doi.org/10.5194/esd-12-457-2021, 2021
Short summary
Short summary
This paper presents new estimates of future extreme weather in Europe, including extreme heat, extreme rainfall and meteorological drought. These new estimates were achieved by repeating model calculations many times, thereby reducing uncertainties of these rare events at low levels of global warming at 1.5 and 2 °C above
pre-industrial temperature levels. These results are important, as they help to assess which weather extremes could increase at moderate warming levels and where.
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021, https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary
Short summary
MLAir provides a coherent end-to-end structure for a typical time series analysis workflow using machine learning (ML). MLAir is adaptable to a wide range of ML use cases, focusing in particular on deep learning. The user has a free hand with the ML model itself and can select from different methods during preprocessing, training, and postprocessing. MLAir offers tools to track the experiment conduction, documents necessary ML parameters, and creates a variety of publication-ready plots.
Marcus Breil, Edouard L. Davin, and Diana Rechid
Biogeosciences, 18, 1499–1510, https://doi.org/10.5194/bg-18-1499-2021, https://doi.org/10.5194/bg-18-1499-2021, 2021
Short summary
Short summary
The physical processes behind varying evapotranspiration rates in forests and grasslands in Europe are investigated in a regional model study with idealized afforestation scenarios. The results show that the evapotranspiration response to afforestation depends on the interplay of two counteracting factors: the transpiration facilitating characteristics of a forest and the reduced saturation deficits of forests caused by an increased surface roughness and associated lower surface temperatures.
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Short summary
With IntelliO3-ts v1.0, we present an artificial neural network as a new forecasting model for daily aggregated near-surface ozone concentrations with a lead time of up to 4 d. We used measurement and reanalysis data from more than 300 German monitoring stations to train, fine tune, and test the model. We show that the model outperforms standard reference models like persistence models and demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d.
Cited articles
About Net-Zero-2050: https://netto-null.org/about_us/index.php.en,
last access: 28 January 2022.
Andre, B., Bonan, G., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek,
E., Knox, R., Lawrence, P., Li, F., Li, H., Lombardozzi, D., Lu, Y., Perket,
J., Riley, W., Sacks, W., Shi, M., Wieder, W., and Xu, C.: Technical
Description of version 5.0 of the Community Land Model (CLM), NCAR, National Center for Atmospheric Research, Boulder, Colorado, 337 pp.,
2020.
App Store: 360∘ Wissenschaft,
https://apps.apple.com/de/app/360-wissenschaft/id1245107779, last access: 30 January 2022.
Bathiany, S. and Rechid, D.: Klimakartenbrowser, Klimakalender,
Wärmebereiche, und Dürredossier der ADAPTER-Produktplattform,
https://www.adapter-projekt.de/klima-produkte/ (last access: 3 June 2022), 2021.
Benites-Lazaro, L. L., Mello-Théry, N. A., and Lahsen, M.: Business
storytelling about energy and climate change: The case of Brazil's ethanol
industry, Energy Res. Soc. Sci., 31, 77–85,
https://doi.org/10.1016/j.erss.2017.06.008, 2017.
Bessembinder, J., Terrado, M., Hewitt, C., Garrett, N., Kotova, L.,
Buonocore, M., and Groenland, R.: Need for a common typology of climate
services, Clim. Serv., 16, 100135,
https://doi.org/10.1016/j.cliser.2019.100135, 2019.
Brosch, T.: Affect and emotions as drivers of climate change perception and
action: a review, Curr. Opin. Behav. Sci., 42, 15–21,
https://doi.org/10.1016/J.COBEHA.2021.02.001, 2021.
Climate Action Tracker: https://climateactiontracker.org/,
last access: 28 January 2022.
Dahlstrom, M. F.: Using narratives and storytelling to communicate science
with nonexpert audiences, Proc. Natl. Acad. Sci. USA., 111,
13614–13620, https://doi.org/10.1073/pnas.1320645111, 2014.
Digital Knowledge Transfer Project Leuphana:
https://www.leuphana.de/kooperationen/forschung-kooperation/kooperationsformate/digital-knowledge-transfer-project.html,
last access: 8 February 2022.
Don, A., Flessa, H., Marx, K., Poeplau, C., Tiemeyer, B., Don, P. D. A., and
Marx, K.: Die 4-Promille-Initiative “Böden für
Ernährungssicherung und Klima” – Wissenschaftliche Bewertung und
Diskussion möglicher Beiträge in Deutschland, Johann Heinrich von
Thünen-Institut, Braunschweig, Germany, 1–41,
https://doi.org/10.3220/WP1543840339000, 2018.
Doran, H., Barnard, D., McAlister, J., Briscoe, R., Hackman, L., and Nic
Daeid, N.: The Evidence Chamber: Playful Science Communication and Research
Through Digital Storytelling, Front. Commun., 6, 786891,
https://doi.org/10.3389/fcomm.2021.786891, 2021.
El Zohbi, J., Preuschmann, S., Blome, T., Dold, C., Köhnke, F., Steuri,
B., Sun, J., Rechid, D., Schultz, M., Jacob, D., and Cluster I
Helmholtz-Klima-Initiative: Neue digitale Formate für die Kommunikation
von CO2-Einsparungspotentialen für Deutschland, KlimaCampus Hamburg, Deutsche Meteorologische Gesellschaft (DMG), TIB AV-Portal [video],
https://doi.org/10.5446/53745, 2021a.
El Zohbi, J., Steuri, B., Ball, C., Bernitt, U., Blome, T., Born, A., Bruhn,
D., Groth, M., Köhnke, F., Mengis, N., Schill, E., Preuschmann, S.,
Thoni, T., and Vögele, S.: Project Briefing no. 9 Stakeholder
Activities Within the Net-Zero-2050 Cluster in Hi-Cam, 11 pp.,
https://www.netto-null.org/imperia/md/assets/net_zero/dokumente/9_stakeholder_activities_final.pdf (last access: 3 Junes 2022), 2021b.
EU: Directive (EU) 2016/2102 of the European Parliament and of the Council
of 26 October 2016 on the accessibility of the websites and mobile
applications of public sector bodies (Text with EEA relevance), http://data.europa.eu/eli/dir/2016/2102/oj (last access: 3 June 2022), 2016.
European Commission and Directorate-General for Research and Innovation:
Science communication: achievements in Horizon 2020 and recommendations on
the way forward, edited by: Delaney, N. and Tornasi, Z., Publications
Office, 28 pp., https://doi.org/10.2777/518359, 2020.
FAO: E-learning methodologies and good practices: A guide for designing and delivering e-learning solutions from the FAO elearning Academy, Scientific Research Publishing, Rome, Italy, 180 pp., 10.4060/i2516e, 2021.
Filipenko, M., Hoffmann, A., Krebs, H., Loew, R., Menner, M., Pistoll, D.,
Priesmeier, F., and Schneider, O.: Towards digital knowledge transfer in
small and medium-sized manufacturing enterprises, 8 pp.,
http://ceur-ws.org/Vol-2348/paper18.pdf (last access: 3 June 2022), 2019.
Future of Science Communication Conference – Wissenschaft im Dialog:
https://www.wissenschaft-im-dialog.de/projekte/future-of-science-communication-conference/,
last access: 30 January 2022.
George, D. R. and Dellasega, C.: Use of social media in graduate-level
medical humanities education: Two pilot studies from Penn State College of
Medicine Use of social media in graduate-level medical humanities education:
Two pilot studies from Penn State College of Medicine, Med. Teach., 33:8,
https://doi.org/10.3109/0142159X.2011.586749, 2011.
Helmholtz – Association of German Research Centres: Our Values,
https://www.helmholtz.de/en/about-us/our-values/, last access: 28 January 2022.
Heukrodt, S., Helm, U., Christoph-schulz, I., and Don, A.: Carbocheck.
Bedarfsanalyse für eine einfach anzuwendende
Humusbilanz-Software-Anwendung Ergebnisse einer Umfrage, THÜNEN,
Braunschweig, 16 pp., https://www.carbocheck.de/fileadmin/carbocheck/CarboCheck_Umfrageergebnisse.pdf (last access: 3 June 2022), 2019.
Impact2C: Discover the IMPACT2C web-atlas: https://www.atlas.impact2c.eu/en/, last
access: 14 February 2022.
Information architecture of a Website: Basics – IONOS:
https://www.ionos.com/digitalguide/websites/website-creation/information-architecture-of-a-website-basics/,
last access: 14 February 2022.
IPCC: Annex I: Glossary, edited by: Matthews, J. B. R., in: Global Warming of 1.5 °C, An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, Cambridge, UK
and New York, NY, USA, 541–562, https://doi.org/10.1017/9781009157940.008, 2018.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge,United Kingdom and New York, NY, USA, 3–32, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf (last access: 16 June 2022), 2021.
Klimanavigator – Der Wegweiser zum Klimawissen in Deutschland:
https://www.klimanavigator.eu/, last access: 28 January 2022.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J.,
Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A.,
Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P.,
Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B.,
Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox,
R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey,
A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M.,
Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of
New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv.
Model. Earth Syst., 11, 4245–4287, https://doi.org/10.1029/2018MS001583,
2019.
Lewin, D.: Toward a theory of pedagogical reduction: Selection, simplification, and generalization in an age of critical education, Educ. Theory, 68, 495–512, https://doi.org/10.1111/edth.12326, 2018.
Liyanage, C., Elhag, T., Ballal, T., and Li, Q.: Knowledge communication and
translation – a knowledge transfer model, J. Knowl. Manag., 13, 118–131,
https://doi.org/10.1108/13673270910962914, 2009.
Martinez-Conde, S. and Macknik, S. L.: Finding the plot in science
storytelling in hopes of enhancing science communication, Proc. Natl. Acad.
Sci. USA, 114, 8127–8129, https://doi.org/10.1073/pnas.1711790114,
2017.
Metag, J., Schäfer, M. S., Füchslin, T., Barsuhn, T., and
Kleinen-von Königslöw, K.: Perceptions of Climate Change Imagery:
Evoked Salience and Self-Efficacy in Germany, Switzerland, and Austria, Sci.
Commun., 38, 197–227, https://doi.org/10.1177/1075547016635181, 2016.
Moezzi, M., Janda, K. B., and Rotmann, S.: Using stories, narratives, and
storytelling in energy and climate change research, Energy Res. Soc. Sci.,
31, 1–10, https://doi.org/10.1016/j.erss.2017.06.034, 2017.
Nachhaltigkeit erzählen – Storytelling für junge Erwachsene –
Wissenschaftskommunikation.de:
https://www.wissenschaftskommunikation.de/nachhaltigkeit-erzaehlen-storytelling-fuer-junge-erwachsene-43403/,
last access: 30 January 2022.
NBS Solution Guide – Naiad:
http://naiad2020.eu/about-the-e-guide/nbs-solution-guide/, last access: 15 February 2022.
Net-Zero-2050 Participating Centres – Netto-Null-2050 Web-Atlas:
https://atlas.netto-null.org/partners, last access: 21 May 2022.
Netto-Null-2050 Cluster I der Helmholtz-Klima-Initiative: Netto-Null-2050
Wegweiser – Strategische Handlungsempfehlungen und mögliche Wege für
ein CO2-neutrales Deutschland bis 2050 [Netto-Null-2050 Internal-Report], in review, 2022.
Netto-Null-2050 Web-Atlas: https://atlas.netto-null.org/, last access: 28 January 2022.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-smart soils, Nature, 532, 49–57,
https://doi.org/10.1038/nature17174, 2016.
Prats-Salvado, E. and Monnerie, N.: Solare Kraftstoffe:
https://atlas.netto-null.org/contribution/75, last access: 18 May 2022.
Preuschmann, S. and Köhnke, F.: Concept-Report M-P1.1.3: Stocktaking and
evaluation of existing approaches towards the interactive and online-based
provision of decision-relevant information (Netto-Null-2050 submitted), 52
pp., 2020.
Preuschmann, S., Hänsler, A., Kotova, L., Dürk, N., Eibner, W.,
Waidhofer, C., Haselberger, C., and Jacob, D.: The IMPACT2C web-atlas –
Conception, organization and aim of a web-based climate service product,
Clim. Serv., 7, 115–125, https://doi.org/10.1016/j.cliser.2017.03.005,
2017.
Pyczak, T.: Tell Me! Wie sie mit Storytelling überzeugen, 2nd ed., Rheinwerk Verlag, Bonn, 303 pp., 2019.
Resmini, A. and Rosati, L.: A Brief History of Information Architecture, J. Inf. Archit., 03, 33–46, 2011.
Reveco Umaña, C. T.: Exploring the use of Climate information in practice, PhD Thesis, Fakultät für Wirtschafts- und Sozialwissenschaften, Universität Hamburg, 259 pp., https://ediss.sub.uni-hamburg.de/handle/ediss/9525 last access: 3 June 2022.
Riggers, C., Poeplau, C., Don, A., Frühauf, C., and Dechow, R.: How much
carbon input is required to preserve or increase projected soil organic
carbon stocks in German croplands under climate change?, Plant Soil, 460,
417–433, https://doi.org/10.1007/s11104-020-04806-8, 2021.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years
of human land use, Proc. Natl. Acad. Sci. USA, 114, 9575–9580,
https://doi.org/10.1073/pnas.1706103114, 2017.
Schuck-Zöller, S., Cortekar, J., and Jacob, D.: Evaluating co-creation of knowledge: from quality criteria and indicators to methods, Adv. Sci. Res., 14, 305–312, https://doi.org/10.5194/asr-14-305-2017, 2017.
Scott, G.: Teaching and communicating science in a digital age (version 1; peer review: not peer reviewed), F1000Research 2015, 4, 3 pp., https://doi.org/10.12688/f1000research.6323.1, 2015.
SECTEUR – Copernicus: https://climate.copernicus.eu/secteur, last
access: 8 February 2022.
Small, G.: Time to tweet, Nature, 479, 141,
https://doi.org/10.1038/nj7371-141a, 2011.
Steuri, B. and Jacob, D.: GERICS coordinates scientific underpinning for a CO2-neutral Germany, Open Access Gov., https://www.openaccessgovernment.org/a-co2-neutral-germany/88959/ (last access: 3 June 2022), 2020.
Steuri, B., Bender, S., and Cortekar, J.: Successful user-science
interaction to co-develop the new urban climate model PALM-4U, Urban Clim.,
32, 100630, https://doi.org/10.1016/J.UCLIM.2020.100630, 2020.
Sukalla, F.: Narrative Persuasion und Einstellungsdissonanz, Springer VS Wiesbaden, 278 pp., https://doi.org/10.1007/978-3-658-20445-7, 2018.
Sun, P. Y. T. and Scott, J. L.: An investigation of barriers to knowledge
transfer, J. Knowl. Manag., 9, 75–90,
https://doi.org/10.1108/13673270510590236, 2005.
Ulbricht, L.: Demokratie und Digitalisierung. Ein Blick auf das politische
System Deutschlands,
https://www.bpb.de/lernen/digitale-bildung/politische-bildung-in-einer-digitalen-welt/324975/demokratie-und-digitalisierung-ein-blick-auf-das-politische-system-deutschlands
(last access: 3 June 2022), 2021.
UNFCCC-Roadmaps – Netto-Null-2050 Web-Atlas:
https://atlas.netto-null.org/roadmaps, last access: 21 May 2022.
UNFCCC-Documents:
https://unfccc.int/documents?f[0]=document_type:4233, last access: 28 January 2022.
Wilcox, C.: Guest Editorial: It's Time To e-Volve: Taking Responsibility for
Science Communication in a Digital Age, Biol. Bull., 222, 85–87,
https://doi.org/10.1086/BBLv222n2p85, 2012.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
Comment: The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.18,
2016.
Williams, R., Sheikh, A., Franklin, B. D., Krasuska, M., Nguyen, H. T.,
Hinder, S., Lane, W., Mozaffar, H., Mason, K., Eason, S., Potts, H. W. W.,
and Cresswell, K.: Using Blueprints to promote interorganizational knowledge
transfer in digital health initiatives – a qualitative exploration of a
national change program in English hospitals, J. Am. Med. Informatics
Assoc., 28, 1431–1439, https://doi.org/10.1093/JAMIA/OCAB020, 2021.
Yeates, C.: CO2-Speicherpotenzial in porösen Aquiferen:
https://atlas.netto-null.org/contribution/1, last access: 18 May 2022.
Zahid, M., El Zohbi, J., Viktor, E., Rechid, D., Schuck-Zöller, S.,
Keup-Thiel, E., and Jacob, D.: Evaluation of Climate Services: Enabling
Users to Assess the Quality of Multi-model Climate Projections and Derived
Products, in: Handbook of Climate Services, edited by: Leal Filho, W. and
Jacob, D., Springer International Publishing, Cham, 183–201,
https://doi.org/10.1007/978-3-030-36875-3_10, 2020.
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
The main aspect of the paper is to obtain transferable principles for the development of digital...