Articles | Volume 19
https://doi.org/10.5194/asr-19-51-2022
https://doi.org/10.5194/asr-19-51-2022
20 Jun 2022
 | 20 Jun 2022

How to develop new digital knowledge transfer products for communicating strategies and new ways towards a carbon-neutral Germany

Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob

Related authors

High-resolution land use and land cover dataset for regional climate modelling: Historical and future changes in Europe
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-431,https://doi.org/10.5194/essd-2022-431, 2022
Preprint under review for ESSD
Short summary
Temperature forecasting by deep learning methods
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022,https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022,https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022,https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022,https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary

Cited articles

About Net-Zero-2050: https://netto-null.org/about_us/index.php.en, last access: 28 January 2022. 
Andre, B., Bonan, G., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Knox, R., Lawrence, P., Li, F., Li, H., Lombardozzi, D., Lu, Y., Perket, J., Riley, W., Sacks, W., Shi, M., Wieder, W., and Xu, C.: Technical Description of version 5.0 of the Community Land Model (CLM), NCAR, National Center for Atmospheric Research, Boulder, Colorado, 337 pp., 2020. 
App Store: 360 Wissenschaft, https://apps.apple.com/de/app/360-wissenschaft/id1245107779, last access: 30 January 2022. 
Bathiany, S. and Rechid, D.: Klimakartenbrowser, Klimakalender, Wärmebereiche, und Dürredossier der ADAPTER-Produktplattform, https://www.adapter-projekt.de/klima-produkte/ (last access: 3 June 2022), 2021. 
Benites-Lazaro, L. L., Mello-Théry, N. A., and Lahsen, M.: Business storytelling about energy and climate change: The case of Brazil's ethanol industry, Energy Res. Soc. Sci., 31, 77–85, https://doi.org/10.1016/j.erss.2017.06.008, 2017. 
Download
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".