Articles | Volume 20
05 Jul 2023
 | 05 Jul 2023

Capturing features of turbulent Ekman–Stokes boundary layers with a stochastic modeling approach

Marten Klein and Heiko Schmidt

Data sets

Map-based stochastic simulation data of a transient Ekman boundary layer Marten Klein

Short summary
Atmospheric boundary layers are inherently unsteady and exhibit processes on multiple scales. A stochastic one-dimensional turbulence model is applied here to periodically forced Ekman flows. These flows are hard to model due to competing laminar and turbulent response mechanisms. It is shown that the model is able to capture parametric dependencies of the near-surface turbulence. The results consolidate improvements seen in a subgrid-scale application of the model within large-eddy simulations.