Ekman, V. W.: On the influence of Earth's rotation on ocean currents, Arkiv
för Matematik, Astronomi och Fysik, 2, 1–52, 1905. a
Ghasemi, A., Klein, M., Will, A., and Harlander, U.: Mean flow generation by an
intermittently unstable boundary layer over a sloping wall, J. Fluid Mech.,
853, 111–149,
https://doi.org/10.1017/jfm.2018.552, 2018.
a,
b,
c,
d,
e,
f,
g,
h,
i
Glawe, C., Medina M., J. A., and Schmidt, H.: IMEX based multi-scale time
advancement in ODTLES, Z. Angew. Math. Mech., 98, 1907–1923,
https://doi.org/10.1002/zamm.201800098, 2018.
a
Gonzalez-Juez, E. D., Schmidt, R. C., and Kerstein, A. R.: ODTLES simulations
of wall-bounded flows, Phys. Fluids, 23, 125102,
https://doi.org/10.1063/1.3664123,
2011.
a
Greenspan, H. P.: The Theory of Rotating Fluids, Cambridge Monographs on
Mechanics and Applied Mathematics, Cambridge University Press, reprint with
corrections, ISBN 978-0521051477, 1969. a
Kerstein, A. R.: One-dimensional turbulence: Model formulation and
application to homogeneous turbulence, shear flows, and buoyant stratified
flows, J. Fluid Mech., 392, 277–334,
https://doi.org/10.1017/S0022112099005376, 1999.
a,
b,
c,
d
Kerstein, A. R.: Reduced numerical modeling of turbulent flow with fully
resolved time advancement. Part 1. Theory and physical interpretation,
Fluids, 7, 76,
https://doi.org/10.3390/fluids7020076, 2022.
a
Kerstein, A. R. and Wunsch, S.: Simulation of a stably stratified atmospheric
boundary layer using one-dimensional turbulence, Bound.-Lay. Meteorol.,
118, 325–356,
https://doi.org/10.1007/s10546-005-9004-x, 2006.
a,
b,
c,
d,
e
Kerstein, A. R., Ashurst, W. T., Wunsch, S., and Nilsen, V.: One-dimensional
turbulence: vector formulation and application to free shear flows, J. Fluid
Mech., 447, 85–109,
https://doi.org/10.1017/S0022112001005778, 2001.
a,
b
Klein, M. and Schmidt, H.: A stochastic modeling strategy for intermittently
unstable Ekman–Stokes boundary layers, Proc. Appl. Math. Mech., 20,
e202000127,
https://doi.org/10.1002/pamm.202000127, 2020.
a,
b
Klein, M. and Schmidt, H.: Exploring stratification effects in stable Ekman boundary layers using a stochastic one-dimensional turbulence model, Adv. Sci. Res., 19, 117–136,
https://doi.org/10.5194/asr-19-117-2022, 2022.
a,
b,
c,
d,
e
Klein, M., Seelig, T., Kurgansky, M. V., Ghasemi V., A., Borcia, I. D., Will,
A., Schaller, E., Egbers, C., and Harlander, U.: Inertial wave excitation and
focusing in a liquid bounded by a frustum and a cylinder, J. Fluid Mech.,
751, 255–297,
https://doi.org/10.1017/jfm.2014.304, 2014.
a,
b,
c
Klein, M., Schmidt, H., and Lignell, D. O.: Stochastic modeling of surface
scalar-flux fluctuations in turbulent channel flow using one-dimensional
turbulence, Int. J. Heat Fluid Flow, 93, 108889,
https://doi.org/10.1016/j.ijheatfluidflow.2021.108889, 2022.
a,
b
Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows,
in: Turbulent Diffusion in Environmental Pollution, edited: by Frenkiel, F. N.
and Munn, R. E., vol. 18 of Adv. Geophys., Elsevier, 237–248,
https://doi.org/10.1016/S0065-2687(08)60464-1, 1975.
a
Lignell, D. O., Kerstein, A. R., Sun, G., and Monson, E. I.: Mesh adaption for
efficient multiscale implementation of one-dimensional turbulence, Theor.
Comp. Fluid Dyn., 27, 273–295,
https://doi.org/10.1007/s00162-012-0267-9, 2013.
a,
b,
c
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface
layer of the atmosphere, Tr. Akad. Nauk. SSSR Geophiz. Inst., 24, 163–187,
1954. a
Monson, E., Lignell, D. O., Finney, M., Werner, C., Jozefik, Z., Kerstein,
A. R., and Hintze, R.: Simulation of ethylene wall fires using the
spatially-evolving one-dimensional turbulence model, Fire Tech., 52,
167–196,
https://doi.org/10.1007/s10694-014-0441-2, 2016.
a
Prandtl, L.: Über Flüssigkeitsbewegungen bei sehr kleiner Reibung (in
German), in: Verh. III. Int. Math. Kongr., 485–491, edited by: Teubner, B. G.,
Heidelberg, 1904, 1st Transl. 1928, NACA Tech. Memo. 452,
https://ntrs.nasa.gov/citations/19930090813 (last access: 23 June 2023), 1905. a
Rakhi, Klein, M., Medina Méndez, J. A., and Schmidt, H.: One-dimensional
turbulence modelling of incompressible temporally developing turbulent
boundary layers with comparison to DNS, J. Turbul., 20, 506–543,
https://doi.org/10.1080/14685248.2019.1674859, 2019.
a,
b
Rampanelli, G., Zardi, D., and Rotunno, R.: Mechanisms of up-valley winds, J.
Atmos. Sci., 61, 3097–3111,
https://doi.org/10.1175/JAS-3354.1, 2004.
a
Salon, S. and Armenio, V.: A numerical investigation of the turbulent
Stokes–Ekman bottom boundary layer, J. Fluid Mech., 684, 316–352,
https://doi.org/10.1017/jfm.2011.303, 2011.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Schmidt, R. C., Kerstein, A. R., Wunsch, S., and Nilsen, V.: Near-wall LES
closure based on one-dimensional turbulence modeling, J. Comput. Phys., 186,
317–355,
https://doi.org/10.1016/S0021-9991(03)00071-8, 2003.
a,
b
Thorade, H.: Gezeitenuntersuchungen in der Deutschen Bucht der Nordsee,
Deutsche Seewarte, 46, 1–85, 1928.
a,
b,
c,
d
Townsend, A. A. R.: The Structure of Turbulent Shear Flow, Cambridge University
Press, 2nd edn., ISBN 978-0521298193, 1976. a
Vincze, M., Fenyvesi, N., Klein, M., Sommeria, J., Viboud, S., and Ashkenazy,
Y.: Evidence for wind-induced Ekman layer resonance based on rotating tank
experiments, Europhys. Lett., 125, 44001,
https://doi.org/10.1209/0295-5075/125/44001, 2019.
a,
b,
c,
d
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau,
I.: A Hierarchy of energy- and flux-budget (EFB) turbulence closure models
for stably-stratified geophysical flows, Bound.-Lay. Meteorol., 146,
341–373,
https://doi.org/10.1007/s10546-012-9768-8, 2013.
a