Climate Change Scenarios for the Basque Country: wind, humidity and radiation
Maialen Martija-Díez
CORRESPONDING AUTHOR
                                            
                                    
                                            Basque meteorology agengy (EUSKALMET), Vitoria-Gasteiz, Basque Country, Spain
                                        
                                    
                                            Department of Physics, University of the Basque Country (UPV/EHU). Leioa, Basque Country, Spain
                                        
                                    Roberto Hernández
                                            Basque meteorology agengy (EUSKALMET), Vitoria-Gasteiz, Basque Country, Spain
                                        
                                    José Daniel Gómez de Segura
                                            Basque meteorology agengy (EUSKALMET), Vitoria-Gasteiz, Basque Country, Spain
                                        
                                    Santiago Gaztelumendi
                                            Basque meteorology agengy (EUSKALMET), Vitoria-Gasteiz, Basque Country, Spain
                                        
                                    Related authors
Santiago Gaztelumendi, Maialen Martija, and Olatz Principe
                                    Adv. Sci. Res., 15, 239–243, https://doi.org/10.5194/asr-15-239-2018, https://doi.org/10.5194/asr-15-239-2018, 2018
                            Santiago Gaztelumendi, Joseba Egaña, and José Antonio Aranda
                                    Adv. Sci. Res., 22, 1–8, https://doi.org/10.5194/asr-22-1-2025, https://doi.org/10.5194/asr-22-1-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Measurements are crucial for understanding atmospheric processes, water cycles, and climate. This paper focuses on optical disdrometer measurements to study precipitation complexity at the surface, analyzing precipitation episodes in the Basque Country. Using 1-minute disdrometer data, key characteristics like duration, intensity, particle count, and rain amount are examined for episodes previously established through aggregation of minute data.
                                            
                                            
                                        Santiago Gaztelumendi, Joseba Egaña, Miriam Ruiz, and Eguzkiñe Iturrioz
                                    Adv. Sci. Res., 21, 41–48, https://doi.org/10.5194/asr-21-41-2024, https://doi.org/10.5194/asr-21-41-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We presents the Basque Country Impact Weather Catalogue, recording detailed information on adverse weather events and their environmental impacts. It includes context, hazard/risk, and impact sections, utilizing data from Euskalmet, Emergency, Media, Insurance, etc. Standardized information enables qualitative and quantitative analysis feasibility for events spanning the 21st century. The paper details catalogue design, structure, and implementation steps.
                                            
                                            
                                        Santiago Gaztelumendi, Joseba Egaña, and Kepa Otxoa de Alda
                                    Adv. Sci. Res., 21, 27–39, https://doi.org/10.5194/asr-21-27-2024, https://doi.org/10.5194/asr-21-27-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This study examines floods in the Basque Autonomous Community from 2000 to 2021, assessing damages, weather conditions, and other factors. It uses data from the Spanish Insurance Compensation Consortium and the AWS network, analyzing diverse datasets to extract indicators. Visual analytics are used for analysis and characterization.
                                            
                                            
                                        Santiago Gaztelumendi, Maialen Martija, and Olatz Principe
                                    Adv. Sci. Res., 15, 239–243, https://doi.org/10.5194/asr-15-239-2018, https://doi.org/10.5194/asr-15-239-2018, 2018
                            Iñaki Orbe and Santiago Gaztelumendi
                                    Adv. Sci. Res., 15, 245–249, https://doi.org/10.5194/asr-15-245-2018, https://doi.org/10.5194/asr-15-245-2018, 2018
                            Santiago Gaztelumendi, Joseba Egaña, Pedro Liria, and José A. Aranda
                                    Adv. Sci. Res., 15, 137–143, https://doi.org/10.5194/asr-15-137-2018, https://doi.org/10.5194/asr-15-137-2018, 2018
                            Iñaki Orbe and Santiago Gaztelumendi
                                    Adv. Sci. Res., 14, 153–156, https://doi.org/10.5194/asr-14-153-2017, https://doi.org/10.5194/asr-14-153-2017, 2017
                            Virginia Palacio, Olatz Principe, Maialen Martija, and Santiago Gaztelumendi
                                    Adv. Sci. Res., 13, 145–150, https://doi.org/10.5194/asr-13-145-2016, https://doi.org/10.5194/asr-13-145-2016, 2016
                                    Short summary
                                    Short summary
                                            
                                                Facebook is one of the most used social networks and it represents a perfect virtual platform to share information and to promote active and immediate interaction amongst users. This is why many NMSs develop new communication strategies and incorporate this tool for different purposes. In this paper we investigate how Facebook was introduced in different NMSs worldwide as an additional tool for the diffusion of meteorological information and interction with users.
                                            
                                            
                                        Iván R. Gelpi, Santiago Gaztelumendi, Sheila Carreño, Roberto Hernández, and Joseba Egaña
                                    Adv. Sci. Res., 13, 137–144, https://doi.org/10.5194/asr-13-137-2016, https://doi.org/10.5194/asr-13-137-2016, 2016
                            Santiago Gaztelumendi, Iñaki Orbe, Onintze Salazar, Ana Lopez, José Antonio Aranda, and Pedro Anitua
                                    Adv. Sci. Res., 13, 87–90, https://doi.org/10.5194/asr-13-87-2016, https://doi.org/10.5194/asr-13-87-2016, 2016
                            Santiago Gaztelumendi, Joseba Egaña, Pedro Liria, Manuel Gonzalez, José Antonio Aranda, and Pedro Anitua
                                    Adv. Sci. Res., 13, 91–96, https://doi.org/10.5194/asr-13-91-2016, https://doi.org/10.5194/asr-13-91-2016, 2016
                            S. Gaztelumendi, M. Martija, O. Principe, and V. Palacio
                                    Adv. Sci. Res., 12, 141–145, https://doi.org/10.5194/asr-12-141-2015, https://doi.org/10.5194/asr-12-141-2015, 2015
                            J. López, V. Urgoiti, M. González, J. A. Aranda, S. Gaztelumendi, and P. Anitua
                                    Nat. Hazards Earth Syst. Sci., 13, 721–726, https://doi.org/10.5194/nhess-13-721-2013, https://doi.org/10.5194/nhess-13-721-2013, 2013
                            Cited articles
                        
                        Ballarin, A. S., Sone, J. S., Gesualdo, G. C., Schwamback, D., Reis, A., Almagro, A., and Wendland, E. C.: CLIMBra-Climate Change Dataset for Brazil, Scientific Data, 10, 47, https://doi.org/10.1038/s41597-023-01956-z, 2023. 
                    
                
                        
                        Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J.E., Hodnebrog, Ø., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H. J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021. 
                    
                
                        
                        Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., and Imecs, Z.: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe, Clim. Dynam., 49, 2665–2683, https://doi.org/10.1007/s00382-016-3471-2, 2017. 
                    
                
                        
                        Bartók, B., Tobin, I., Vautard, R., Vrac, M., Jin, X., Levavasseur, G., Denvil, S., Dubus, L., Parey, S., Michelangeli, P. A., Troccoli, A., and Saint-Drenan, Y. M.: A climate projection dataset tailored for the European energy sector, Clim. Serv., 16, 100138, https://doi.org/10.1016/j.cliser.2019.100138, 2019. 
                    
                
                        
                        Brouillet, A. and Joussaume, S.: Investigating the Role of the Relative Humidity in the Co-Occurrence of Temperature and Heat Stress Extremes in CMIP5 Projections, Geophys. Res. Lett., 46, 11435–11443, https://doi.org/10.1029/2019GL084156, 2019.  
                    
                
                        
                        Carvalho, D., Rocha, A., Gómez-Gesteira, M., and Silva Santos, C.: Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections, Renew. Energ., 101, 29–40, https://doi.org/10.1016/j.renene.2016.08.036, 2017. 
                    
                
                        
                        Cleugh, H. A., Miller, J. M., and Böhm, M.: Direct mechanical effects of wind on crops, Agroforest. Syst., 41, 85–112, 1998. 
                    
                
                        
                        Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. 
                    
                
                        
                        Costoya, X., Rocha, A., and Carvalho, D.: Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula, Appl. Energ., 262, 114562, https://doi.org/10.1016/j.apenergy.2020.114562, 2020. 
                    
                
                        
                        de Baar, J. H., van der Schrier, G., van den Besselaar, E. J., Garcia-Marti, I., and de Valk, C.: A new E-OBS gridded dataset for daily mean wind speed over Europe, Int. J. Climatol., 43, 6083–6100, https://doi.org/10.1002/joc.8191, 2023a. 
                    
                
                        
                        de Baar, J. H. S., Nhat Luu, L., van der Schrier, G., van den Besselaar, E. J. M., and Garcia-Marti, I.: Recent improvements in the E-OBS gridded data set for daily mean wind speed over Europe in the period 1980–2021, Adv. Sci. Res., 20, 91–95, https://doi.org/10.5194/asr-20-91-2023, 2023b. 
                    
                
                        
                        Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Nat. Clim. Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012. 
                    
                
                        
                        Doblas-Reyes, F. J., Sörensson, A. A., Almazroui, M., Dosio, A., Gutowski, W., Haarsma, R., Hamdi, B., Hewitson, W.-T., Kwon, B. L., Lamptey, D., Maraun, T. S., Stephenson, I., Takayabu, L., Terray, A., Turner, A., and Zuo, Z.: Linking Global to Regional Climate Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1363–1512, https://doi.org/10.1017/9781009157896.012, 2021. 
                    
                
                        
                        E-OBS: E-OBS dataset, E-OBS [data set], https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php (last access: 1 October 2022), 2022. 
                    
                
                        
                        Fischer, E. M. and Knutti, R.: Robust projections of combined humidity and temperature extremes, Nat. Clim. Change, 3, 126–130, https://doi.org/10.1038/nclimate1682, 2013. 
                    
                
                        
                        Gaztelumendi, S., Gomez de Segura, J. D., Hernandez, R., Martija-DIez, M., and Aranda, J. A.: Climate change monitoring and atmospheric indices in Basque Country: experiences from URBANKLIMA2050 LIFE project., EMS Annual Meeting 2022, Bonn, Germany, 5–9 Sep 2022, EMS2022-596, https://doi.org/10.5194/ems2022-596, 2022. 
                    
                
                        
                        Hueging, H., Haas, R., Born, K., Jacob, D., and Pinto, J. G.: Regional changes in wind energy potential over Europe using regional climate model ensemble projections, J. Appl. Meteorol. Clim., 52, 903–917, https://doi.org/10.1175/JAMC-D-12-086.1, 2013. 
                    
                
                        
                        ihobe: Escenarios climáticos en Euskadi y series de datos, http://escenariosklima.ihobe.eus (last access: 12 December 2024), 2024. 
                    
                
                        
                        Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J. F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: New high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. 
                    
                
                        
                        Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda. M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A., Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin, E. L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M. A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro, J. J., González-Alemán, J. J., Gutiérrez, C., Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P., Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H. J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J. P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community, Reg. Environ. Change, 20, 50, https://doi.org/10.1007/s10113-020-01606-9, 2020. 
                    
                
                        
                        McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S., and Dinpashoh, Y.: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, J. Hydrol., 416, 182–205, https://doi.org/10.1016/j.jhydrol.2011.10.024, 2012. 
                    
                
                        
                        Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., Lucas, M. P., Mckenzie, M. M., Shea, A. G., Tseng, H., Giambelluca, T. W., Leon, L. R., Hawkins, E., and Trauernicht, C.: Global risk of deadly heat, Nat. Clim. Change, 7, 501–506, https://doi.org/10.1038/nclimate3322, 2017. 
                    
                
                        
                        Panofsky, H. A.,. Brier, G. W., and Best, W. H.: Some application of statistics to meteorology, Earth Miner. Sci. Contin. Educ. Coll. Earth Miner. Sci. Pennsylvania State Univ., https://books.google.es/books?id=1WARAQAAIAAJ (last access: 12 December 2024), 1958. 
                    
                
                        
                        Pryor, S. C. and Barthelmie, R. J.: Climate change impacts on wind energy: A review, Renewable and sustainable energy reviews, 14, 430–437, https://doi.org/10.1016/j.rser.2009.07.028, 2010.  
                    
                
                        
                        Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R., and Sakaguchi, K.: Climate change impacts on wind power generation, Nature Reviews Earth and Environment, 1, 627–643, https://doi.org/10.1038/s43017-020-0101-7, 2020. 
                    
                
                        
                        Rojas-Labanda, C., González-Rouco, F., García-Bustamante, E., Navarro, J., Lucio-Eceiza, E. E., Van der Schrier, G., and Kaspar, F.: Surface wind over Europe: Data and variability, Int. J. Climatol., 43, 134–156, https://doi.org/10.1002/joc.7739, 2023. 
                    
                
                        
                        Ruosteenoja, K. and Räisänen, P.: Seasonal Changes in Solar Radiation and Relative Humidity in Europe in Response to Global Warming, J. Climate, 26, 2467–2481, https://doi.org/10.1175/JCLI-D-12-00007.1, 2013. 
                    
                
                        
                        Sailor, D. J., Smith, M., and Hart, M.: Climate change implications for wind power resources in the Northwest United States, Renew. Energ., 33, 2393–2406, https://doi.org/10.1016/j.renene.2008.01.007, 2008. 
                    
                
                        
                        Scoccimarro, E., Fogli, P. G., and Gualdi, S.: The role of humidity in determining scenarios of perceived temperature extremes in Europe, Environ. Res. Lett., 12, 114029, https://doi.org/10.1088/1748-9326/aa8cdd, 2017. 
                    
                
                        
                        Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012. 
                    
                
                        
                        Tobin, I., Greuell, W., Jerez, S., Ludwig, F., Vautard, R., Van Vliet, M. T. H., and Breón, F. M.: Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming, Environ. Res. Lett., 13, 044024, https://doi.org/10.1088/1748-9326/aab211, 2018. 
                    
                
                        
                        Van Der Wiel, K., Bloomfield, H. C., Lee, R. W., Stoop, L. P., Blackport, R., Screen, J. A., and Selten, F. M.: The influence of weather regimes on European renewable energy production and demand, Environ. Res. Lett., 14, 094010, https://doi.org/10.1088/1748-9326/ab38d3, 2019. 
                    
                
                        
                        Wild, M., Folini, D., Henschel, F., Fischer, N., and Müller, B.: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems, Sol. Energy, 116, 12–24, https://doi.org/10.1016/j.solener.2015.03.039, 2015. 
                    
                
                        
                        Willett, K. M., Gillett, N. P., Jones, P. D., and Thorne, P. W.: Attribution of observed surface humidity changes to human influence, Nature, 449, 710–712, https://doi.org/10.1038/nature06207, 2007. 
                    
                
                        
                        Zhang, P., Zhang, J., and Chen, M.: Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation, J. Environ. Econ. Manag., 83, 8–31, https://doi.org/10.1016/j.jeem.2016.12.001, 2017. 
                    
                Short summary
            This paper explores the projected changes on wind, relative humidity and solar radiation in future scenarios for the Basque Country. This work is part of the UrbanKlima2050 initiative and aims to provide a more comprehensive characterization of future climate change impacts in the region, and thus, improve the resiliency of the territory. The main results show a decrease in both wind and relative humidity by the end of this century, while solar radiation tends to increase.
            This paper explores the projected changes on wind, relative humidity and solar radiation in...