Improving wind power forecasts in the Belgian North Sea with a wind farm parameterization and a neural network
Cited articles
Ally, S., Verstraeten, T., Daems, P.-J., Nowé, A., and Helsen, J.: Modular deep learning approach for wind farm power forecasting and wake loss prediction, Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025, 2025. a, b
Almeida, L. B.: Multilayer perceptrons, in: Handbook of Neural Computation, pp. C1–2, CRC Press, https://doi.org/10.1201/9780429142772, 2020. a
Barthelmie, R. J., Hansen, K., Frandsen, S. T., Rathmann, O., Schepers, J., Schlez, W., Phillips, J., Rados, K., Zervos, A., Politis, E., et al.: Modelling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 12, 431–444, 2009. a
Borgers, R., van Lipzig, N. P. M., and Meyers, J.: Energy production and inter-farm wake losses in future North Sea wind farms, Environmental Research Letters, https://doi.org/10.1088/1748-9326/add8a2, 2025. a