Carvalho, D., Rocha, A., Gómez-Gesteira, M., and Santos, C. S.: WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal, Applied Energy, 117, 116–126, https://doi.org/10.1016/j.apenergy.2013.12.001, 2014a.
Carvalho, D., Rocha, A., Gómez-Gesteira, M., and Santos, C. S.: Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula, Applied Energy, 134, 57–64, https://doi.org/10.1016/j.apenergy.2014.08.018, 2014b.
Clarke, E., Doddy, S., Griffin, F., McDermott, J., Monteiro Correia, C., and Sweeney, C.: Which reanalysis dataset should we use for renewable energy analysis in Ireland?, Atmosphere, 12, 624, https://doi.org/10.3390/atmos12050624, 2021.
Dawkins, L. C.: Weather and climate related sensitivities and risks in a highly renewable UK energy system: a literature review, Crown Copyright, Met Office, Exeter (UK), London, UK, 2019.
Drobinski, P., Coulais, C., and Jourdier, B.: Surface wind-speed statistics modelling: Alternatives to the Weibull distribution and performance evaluation, Boundary-Layer Meteorology, 157, 97–123, https://doi.org/10.1007/s10546-015-0035-7, 2015.
Fan, W., Liu, Y., Chappell, A., Dong, L., Xu, R., Ekström, M., and Fu, T. M.: Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations, Journal of Applied Meteorology and Climatology, 60, 33–50, https://doi.org/10.1175/JAMC-D-20-0037.1, 2021.
Fragano, C. and Colle, B.: Validation of offshore winds in the ERA5 reanalysis and NREL NOW-23 WRF analysis using two floating LiDARs in the New York Bight, Weather and Forecasting, 40, 1307–1323, https://doi.org/10.1175/WAF-D-24-0155.1, 2025
Gandoin, R. and Garza, J.: Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction, Wind Energ. Sci., 9, 1727–1745, https://doi.org/10.5194/wes-9-1727-2024, 2024.
Gualtieri, G.: Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review, Renewable and Sustainable Energy Reviews, 167, 112741, https://doi.org/10.1016/j.rser.2022.112741, 2022.
Heppelmann, T., Steiner, A., and Vogt, S.: Application of numerical weather prediction in wind power forecasting: Assessment of the diurnal cycle, Meteorologische Zeitschrift, 26, 319–331, https://doi.org/10.1127/metz/2017/0820, 2017.
Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M., Bosveld, F. C., Cuxart, J., Lindvall, J., Steeneveld, G. J., Tjernström, M., and Van de Wiel, B. J. H.: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models, Bulletin of the American Meteorological Society, 94, 1691–1706, https://doi.org/10.1175/BAMS-D-11-00187.1, 2013.
Jourdier, B.: Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA, and AROME to simulate wind power production over France, Advances in Science and Research, 17, 63–77, https://doi.org/10.5194/asr-17-63-2020, 2020.
Jourdier, B., Diaz, C., and Dubus, L.: Evaluation of CERRA for wind energy applications, EMS Annual Meeting 2023, Bratislava, Slovakia, 4–8 September 2023, EMS2023-311, https://doi.org/10.5194/ems2023-311, 2023.
MacDonald, M. and Teixeira, J.: Scaling behavior of a turbulent kinetic energy closure scheme for the stably stratified atmosphere: A steady-state analysis, Journal of the Atmospheric Sciences, 77, 3161–3170, https://doi.org/10.1175/JAS-D-19-0332.1, 2020.
Miao, H., Dong, D., Huang, G., Hu, K., and Tian, Q.: Evaluation of northern hemisphere surface wind speed and wind power density in multiple reanalysis datasets, Energy, 200, 117382, https://doi.org/10.1016/j.energy.2020.117382, 2020.
Olsen, B. T., Hahmann, A., Žagar, M., Hristov, Y., Mann, J., Kelly, M., and Badger, J.: Mapping the European wind climate: Validation of the New European Wind Atlas, EMS Annual Meeting, 2019, 9–13 September 2019, Lyngby, Denmark, 2019.
Potisomporn, P., Adcock, T. A., and Vogel, C. R.: Evaluating ERA5 reanalysis predictions of low wind speed events around the UK, Energy Reports, 10, 4781–4790, https://doi.org/10.1016/j.egyr.2023.11.035, 2023.
Pronk, V., Bodini, N., Optis, M., Lundquist, J. K., Moriarty, P., Draxl, C., Purkayastha, A., and Young, E.: Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?, Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, 2022.
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas-Reyes, F.: What global reanalysis best represents near-surface winds?, Quarterly Journal of the Royal Meteorological Society, 145, 3236–3251, https://doi.org/10.1002/qj.3616, 2019.
Ridal, M., Bazile, E., Le Moigne, P., Randriamampianina, R., Schimanke, S., Andrae, U., Berggren, L., Brousseau, P., Dahlgren, P., Edvinsson, L., El-Said, A., Glinton, M., Hagelin, S., Hopsch, S., Isaksson, L., Medeiros, P., Olsson, E., Unden, P., and Wang, Z. Q.: CERRA, the Copernicus European Regional Reanalysis system, Quarterly Journal of the Royal Meteorological Society, 150, 3385–3411, https://doi.org/10.1002/qj.4764, 2024.
Rouholahnejad, F., Meyer, P. J., and Gottschall, J.: Collocating wind data: A case study on the verification of the CERRA dataset, Journal of Physics: Conference Series, 2875, 012016, https://doi.org/10.1088/1742-6596/2875/1/012016, 2024.
RTE: Bilan électrique 2023, RTE,
https://assets.rte-france.com/analyse-et-donnees/2024-03/Bilan%20%C3%A9lectrique%202023%20rapport%20complet_29fev24.pdf (last access: 13 November 2025), 2023.
RTE: Futurs énergétiques 2050, Principaux résultats, RTE,
https://assets.rte-france.com/prod/public/2021-10/Futurs-Energetiques-2050-principaux-resultats_0.pdf (last access: 13 November 2025), 2021.
Salameh, T., Drobinski, P., Vrac, M., and Naveau, P.: Statistical downscaling of near-surface wind over complex terrain in southern France, Meteorology and Atmospheric Physics, 103, 253–265, https://doi.org/10.1007/s00703-008-0330-7, 2009.
Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., and Balsamo, G.: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?, Journal of Advances in Modeling Earth Systems, 5, 117–133, https://doi.org/10.1002/jame.20013, 2013.
Schimanke, S., Ridal, M., Le Moigne, P., Berggren, L., Undén, P., Randriamampianina, R., Andrea, U., Bazile, E., Bertelsen, A., Brousseau, P., Dahlgren, P., Edvinsson, L., El Said, A., Glinton, M., Hopsch, S., Isaksson, L., Mladek, R., Olsson, E., Verrelle, A., and Wang, Z.: CERRA sub-daily regional reanalysis data for Europe on height levels from 1984 to present, CDS [data set], https://doi.org/10.24381/cds.38b394e6, 2021a.
Schimanke, S., Ridal, M., Le Moigne, P., Berggren, L., Undén, P., Randriamampianina, R., Andrea, U., Bazile, E., Bertelsen, A., Brousseau, P., Dahlgren, P., Edvinsson, L., El Said, A., Glinton, M., Hopsch, S., Isaksson, L., Mladek, R., Olsson, E., Verrelle, A., and Wang, Z.: CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present, CDS [data set], https://doi.org/10.24381/cds.622a565a, 2021b.
Shen, C., Zha, J., Wu, J., Zhao, D., Azorin-Molina, C., Fan, W., and Yu, Y.: Does CRA-40 outperform other reanalysis products in evaluating near-surface wind speed changes over China?, Atmos Res., 266, 105948, https://doi.org/10.1016/j.atmosres.2021.105948, 2022.
Sheridan, L. M., Krishnamurthy, R., García Medina, G., Gaudet, B. J., Gustafson Jr., W. I., Mahon, A. M., Shaw, W. J., Newsom, R. K., Pekour, M., and Yang, Z.: Offshore reanalysis wind speed assessment across the wind turbine rotor layer off the United States Pacific coast, Wind Energ. Sci., 7, 2059–2084, https://doi.org/10.5194/wes-7-2059-2022, 2022.
Spangehl, T., Borsche, M., Niermann, D., Kaspar, F., Schimanke, S., Brienen, S., Möller, T., and Brast, M.: Intercomparing the quality of recent reanalyses for offshore wind farm planning in Germany's exclusive economic zone of the North Sea, Adv. Sci. Res., 20, 109–128, https://doi.org/10.5194/asr-20-109-2023, 2023.
Wilczak, J., Akish, E., Capotondi, A., and Compo, G.: Evaluation and bias correction of the ERA5 reanalysis over the United States for wind and solar energy applications, Energies, 17, 1667, https://doi.org/10.3390/en17071667, 2024.
Xu, Y., Yu, H., Wang, S., Chai, Y., and Zhang, C.: Comparison of temperature, relative humidity and surface pressure from CERRA, UERRA and ERA5 reanalysis over Europe, Advances in Space Research, 75, 5363–5373, https://doi.org/10.1016/j.asr.2025.01.038, 2025.