Articles | Volume 12, issue 1
https://doi.org/10.5194/asr-12-63-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/asr-12-63-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
User awareness concerning feedback data and input observations used in reanalysis systems
H. Gregow
CORRESPONDING AUTHOR
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK
H. M. Mäkelä
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
A. K. Kaiser-Weiss
Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
A. Obregon
Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
D. G. H. Tan
European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK
S. Kekki
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
F. Kaspar
Deutscher Wetterdienst, Frankfurter Straße 135, 63067 Offenbach, Germany
Related authors
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and VIctoria Anne SInclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3019, https://doi.org/10.5194/egusphere-2024-3019, 2024
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing 92 most damaging windstorms (2005–2018). The southwest- and northwest-originating windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020, https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary
Short summary
Reanalysis data of the strength of the polar vortex is applied in the post-processing of the European Centre for Medium-Range Weather Forecasts (ECMWF) winter surface temperature forecasts for weeks 3–4 and 5–6 over northern Europe. In this way, the skill scores of these forecasts are slightly improved. It is also found that, in cases where the polar vortex was weak at the start of the forecast, the mean skill scores of these forecasts were higher than average.
Hannu Valta, Ilari Lehtonen, Terhi K. Laurila, Ari Venäläinen, Mikko Laapas, and Hilppa Gregow
Adv. Sci. Res., 16, 31–37, https://doi.org/10.5194/asr-16-31-2019, https://doi.org/10.5194/asr-16-31-2019, 2019
Short summary
Short summary
A comparison of forest damage with windstorm intensity in Finland suggests that the volume of forest damage follows approximately a power relation as a function of wind gust speed with a power of ~10. This tentative estimate holds for typical windstorms having mainly westerly winds and affecting large areas in southern and central parts of Finland. The estimate can be utilized when preparing impact-based predictions of windstorms.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Tiina Ervasti, Hilppa Gregow, Andrea Vajda, Terhi K. Laurila, and Antti Mäkelä
Adv. Sci. Res., 15, 99–106, https://doi.org/10.5194/asr-15-99-2018, https://doi.org/10.5194/asr-15-99-2018, 2018
Short summary
Short summary
An online survey was used to map the needs and preferences of the Finnish general public about extended-range forecasts and their presentation. Survey results guided the co-design process of novel extended-range forecasts in the project. The respondents considered that the tailored extended-range forecasts would be beneficial in planning activities, preparing for weather risks and scheduling everyday life. They also valued impact information higher than advice on how to prepare for the impacts.
Atte Harjanne, Riina Haavisto, Heikki Tuomenvirta, and Hilppa Gregow
Adv. Sci. Res., 14, 293–304, https://doi.org/10.5194/asr-14-293-2017, https://doi.org/10.5194/asr-14-293-2017, 2017
Short summary
Short summary
Weather, climate and climate change can cause significant risks to businesses and public administration. By asking Finnish organizations about their weather and climate risk perceptions and management, this study aims to improve ways climate services can support in adapting to current and future climate. The results indicate that climate risk management is often de-centralized and relies on expert networks but that practices differ between actors.
Otto Hyvärinen, Antti Mäkelä, Matti Kämäräinen, and Hilppa Gregow
Adv. Sci. Res., 14, 89–93, https://doi.org/10.5194/asr-14-89-2017, https://doi.org/10.5194/asr-14-89-2017, 2017
Short summary
Short summary
Finnish Meteorological Institute and Helen Ltd examined the feasibility of long-range forecasts (longer than two weeks) of temperature for needs of the energy sector in Helsinki, Finland. In this study, we examined the quality of Heating degree day (HDD) forecasts. As the forecasts we used UK Met Office seasonal forecasts. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015–2016, up to two months, especially if the very cold January is excluded.
Matti Kämäräinen, Otto Hyvärinen, Kirsti Jylhä, Andrea Vajda, Simo Neiglick, Jaakko Nuottokari, and Hilppa Gregow
Nat. Hazards Earth Syst. Sci., 17, 243–259, https://doi.org/10.5194/nhess-17-243-2017, https://doi.org/10.5194/nhess-17-243-2017, 2017
Short summary
Short summary
Freezing rain is a high-impact wintertime weather phenomenon. The direct damage it causes to critical infrastructure (transportation, communication and energy) and forestry can be substantial. In this work a method for estimating the occurrence of freezing rain was evaluated and used to derive the climatology. The method was able to accurately reproduce the observed, spatially aggregated annual variability. The highest frequencies of freezing rain were found in eastern and central Europe.
Ilari Lehtonen, Matti Kämäräinen, Hilppa Gregow, Ari Venäläinen, and Heli Peltola
Nat. Hazards Earth Syst. Sci., 16, 2259–2271, https://doi.org/10.5194/nhess-16-2259-2016, https://doi.org/10.5194/nhess-16-2259-2016, 2016
Short summary
Short summary
We studied the impact of projected climate change on the risk of snow-induced forest damage in Finland. Although winters are projected to become milder over the whole of Finland, our results suggest than in eastern and northern Finland the risk may increase while in southern and western parts of the country it is projected to decrease. This indicates that there is increasing need to consider the potential of snow damage in forest management in eastern and northern Finland.
I. Lehtonen, A. Venäläinen, M. Kämäräinen, H. Peltola, and H. Gregow
Nat. Hazards Earth Syst. Sci., 16, 239–253, https://doi.org/10.5194/nhess-16-239-2016, https://doi.org/10.5194/nhess-16-239-2016, 2016
Short summary
Short summary
The number of large forest fires in Finland will most likely increase during the twenty-first century in response to projected climate change. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to effective fire suppression. However, our results show considerable inter-model variability, demonstrating the large uncertainty related to the rate of the projected change in forest-fire danger.
A. K. Kaiser-Weiss, F. Kaspar, V. Heene, M. Borsche, D. G. H. Tan, P. Poli, A. Obregon, and H. Gregow
Adv. Sci. Res., 12, 187–198, https://doi.org/10.5194/asr-12-187-2015, https://doi.org/10.5194/asr-12-187-2015, 2015
Short summary
Short summary
Wind speed measured at the German stations correlate well with reanalysis fields. Monthly means from two global reanalyses (ERA-20C, ERA-Interim) and one regional reanalysis (COSMO-REA6) were analysed and correlate well for the majority of the German stations. Thus we conclude that the monthly and seasonal anomalies recorded at these stations can be understood as representative for a spatial area comparable to the resolution of the reanalyses, at least for the recent years.
P. Jokinen, A. Vajda, and H. Gregow
Adv. Sci. Res., 12, 97–101, https://doi.org/10.5194/asr-12-97-2015, https://doi.org/10.5194/asr-12-97-2015, 2015
Short summary
Short summary
Emergency rescue data and weather reanalysis data were combined to study the spatial and decadal characteristics of potential forest damage days in Finland due to windstorms. The most prone area for damage days was the south-western part of Finland. Results also indicated a lull period during the 1990s compared to the 1980s and 2000s, albeit no trend was evident. The study highlighted the importance of not only focusing on wind speeds, but also soil conditions.
O. Hyvärinen, L. Mtilatila, K. Pilli-Sihvola, A. Venäläinen, and H. Gregow
Adv. Sci. Res., 12, 31–36, https://doi.org/10.5194/asr-12-31-2015, https://doi.org/10.5194/asr-12-31-2015, 2015
Short summary
Short summary
We assessed the quality of the seasonal precipitation forecasts issued by Regional Climate Outlook Forum for Malawi and Zambia. The forecasts, issued in August, are of rainy season rainfall accumulations for early and late season. The forecasts are rather well-calibrated, but cannot discriminate between different events. But these results can be too pessimistic, because forecasts have gone through much development lately, and forecasts using current methodology might have performed better.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and VIctoria Anne SInclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3019, https://doi.org/10.5194/egusphere-2024-3019, 2024
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing 92 most damaging windstorms (2005–2018). The southwest- and northwest-originating windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Johannes Meuer, Laurens M. Bouwer, Frank Kaspar, Roman Lehmann, Wolfgang Karl, Thomas Ludwig, and Christopher Kadow
EGUsphere, https://doi.org/10.5194/egusphere-2024-1392, https://doi.org/10.5194/egusphere-2024-1392, 2024
Short summary
Short summary
Our study focuses on filling in missing precipitation data using an advanced neural network model. Traditional methods for estimating missing climate information often struggle in large regions where data is scarce. Our solution, which incorporates recent advances in machine learning, captures the intricate patterns of precipitation over time, especially during extreme weather events. Our model shows good performance in reconstructing large regions of missing rainfall radar data.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1805, https://doi.org/10.5194/egusphere-2024-1805, 2024
Short summary
Short summary
Using the satellite-based climate data record CLARA-A3 spanning 1982–2020 and ERA5 reanalysis, we present climate regimes that are favourable or unfavourable for solar energy applications. We show that the favourable climate regimes are emerging over much of Europe during spring and early summer for solar energy exploitation.
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-75, https://doi.org/10.5194/nhess-2024-75, 2024
Preprint under review for NHESS
Short summary
Short summary
The skill of hindcasts of the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days (periods with the 5-day moving average temperature being above its local summer 90th percentile) over Europe 1 to 4 weeks ahead is examined. The heat wave days forecasts show potential in warning of heat risk in 1–2 weeks in advance, and enhanced accuracy in forecasting prolonged heat waves, in lead times of up to 3 weeks, when the heat wave had initiated prior to the forecast issuance.
Ulrich Voggenberger, Leopold Haimberger, Federico Ambrogi, and Paul Poli
Geosci. Model Dev., 17, 3783–3799, https://doi.org/10.5194/gmd-17-3783-2024, https://doi.org/10.5194/gmd-17-3783-2024, 2024
Short summary
Short summary
This paper presents a method for calculating balloon drift from historical radiosonde ascent data. The drift can reach distances of several hundred kilometres and is often neglected. Verification shows the beneficial impact of the more accurate balloon position on model assimilation. The method is not limited to radiosondes but would also work for dropsondes, ozonesondes, or any other in situ sonde carried by the wind in the pre-GNSS era, provided the necessary information is available.
Thomas Spangehl, Michael Borsche, Deborah Niermann, Frank Kaspar, Semjon Schimanke, Susanne Brienen, Thomas Möller, and Maren Brast
Adv. Sci. Res., 20, 109–128, https://doi.org/10.5194/asr-20-109-2023, https://doi.org/10.5194/asr-20-109-2023, 2023
Short summary
Short summary
The quality of the global reanalysis ERA5, the regional reanalysis COSMO-REA6 and a successor version (R6G2), the new Copernicus European Regional Re-Analysis (CERRA) and a regional downscaling simulation with COSMO-CLM (HoKliSim-De) is assessed for offshore wind farm planning in the German Exclusive Economic Zone (EEZ) of the North Sea. The quality is assessed using in-situ wind measurements at the research platform FINO1 and satellite-based data of the near-surface wind speed as reference.
Katharina Lengfeld, Paul Voit, Frank Kaspar, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 1227–1232, https://doi.org/10.5194/nhess-23-1227-2023, https://doi.org/10.5194/nhess-23-1227-2023, 2023
Short summary
Short summary
Estimating the severity of a rainfall event based on the damage caused is easy but highly depends on the affected region. A less biased measure for the extremeness of an event is its rarity combined with its spatial extent. In this brief communication, we investigate the sensitivity of such measures to the underlying dataset and highlight the importance of considering multiple spatial and temporal scales using the devastating rainfall event in July 2021 in central Europe as an example.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
Mika Rantanen, Kirsti Jylhä, Jani Särkkä, Jani Räihä, and Ulpu Leijala
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-314, https://doi.org/10.5194/nhess-2021-314, 2021
Revised manuscript not accepted
Short summary
Short summary
Using sea level and precipitation observations, we analysed the meteorological characteristics of days when heavy precipitation and high sea level occur simultaneously in Finland. We found that around 5 % of all heavy precipitation and high sea level events on the Finnish coast are so called compound events when they both occur simultaneously, and these events were associated with close passages of mid-latitude cyclones. Our results act as a basis for compound flooding research in Finland.
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Christopher W. Frank, Frank Kaspar, Jan D. Keller, Till Adams, Miriam Felkers, Bernd Fischer, Marcus Handte, Pedro José Marrón, Hinrich Paulsen, Markus Neteler, Jochen Schiewe, Marvin Schuchert, Christian Nickel, Richard Wacker, and Richard Figura
Adv. Sci. Res., 17, 183–190, https://doi.org/10.5194/asr-17-183-2020, https://doi.org/10.5194/asr-17-183-2020, 2020
Short summary
Short summary
Access to high quality weather and climate data is crucial for a wide range of societal and economic issues. It allows optimising industrial processes with respect to efficiency. The goal of the research project FAIR is to simplify the information exchange between the DWD and economical players. This paper summarizes the results of the requirement analysis of three use cases and presents the deduced technical architecture and FAIR services aiming at a user-friendly exchange of weather data.
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020, https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary
Short summary
Reanalysis data of the strength of the polar vortex is applied in the post-processing of the European Centre for Medium-Range Weather Forecasts (ECMWF) winter surface temperature forecasts for weeks 3–4 and 5–6 over northern Europe. In this way, the skill scores of these forecasts are slightly improved. It is also found that, in cases where the polar vortex was weak at the start of the forecast, the mean skill scores of these forecasts were higher than average.
Frank Kaspar, Deborah Niermann, Michael Borsche, Stephanie Fiedler, Jan Keller, Roland Potthast, Thomas Rösch, Thomas Spangehl, and Birger Tinz
Adv. Sci. Res., 17, 115–128, https://doi.org/10.5194/asr-17-115-2020, https://doi.org/10.5194/asr-17-115-2020, 2020
Short summary
Short summary
Reanalyses are long-term meteorological datasets that are based on numerical weather prediction models and the assimilation of historic observations. The regional model COSMO of Germany’s national meteorological service (Deutscher Wetterdienst) has been used to develop regional reanalyses with spatial resolution of up to 2 km. In this paper, we provide an overview of evaluation results and application examples at the European and national German level with a focus on renewable energy.
Taru Olsson, Anna Luomaranta, Kirsti Jylhä, Julia Jeworrek, Tuuli Perttula, Christian Dieterich, Lichuan Wu, Anna Rutgersson, and Antti Mäkelä
Adv. Sci. Res., 17, 87–104, https://doi.org/10.5194/asr-17-87-2020, https://doi.org/10.5194/asr-17-87-2020, 2020
Short summary
Short summary
Statistics of the frequency and intensity of snow bands affecting the Finnish coast during years 2000–2010 was conducted. A set of criteria for meteorological variables favoring the formation of the snow bands were applied to regional climate model (RCA4) data. We found on average three days per year with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline.
Lisa Hannak, Karsten Friedrich, Florian Imbery, and Frank Kaspar
Adv. Sci. Res., 16, 175–183, https://doi.org/10.5194/asr-16-175-2019, https://doi.org/10.5194/asr-16-175-2019, 2019
Short summary
Short summary
In order to analyze the impact on long time series by the transition from manual to automatic sunshine duration devices, parallel measurements of German climate reference stations are used. The different measurement principles (glass sphere and photodiode) cause systematic differences between the observations. With a linear regression model (used to adjust the automatic measurements) we want to prevent breaks in long time series of daily sunshine duration.
Frank Kaspar, Michael Borsche, Uwe Pfeifroth, Jörg Trentmann, Jaqueline Drücke, and Paul Becker
Adv. Sci. Res., 16, 119–128, https://doi.org/10.5194/asr-16-119-2019, https://doi.org/10.5194/asr-16-119-2019, 2019
Short summary
Short summary
In this study, we assess balancing effects between photovoltaics and wind energy. On average, the seasonal cycles complement each other in Germany as well as in Europe. The frequency of events with a risk of low electricity generation is analyzed. The results illustrate that the number of such events is reduced when offshore regions are included, or when a combined system of PV and wind energy is considered. A European-wide analysis also leads to a distinct reduction of such events.
Frank Kaspar, Frank Kratzenstein, and Andrea K. Kaiser-Weiss
Adv. Sci. Res., 16, 75–83, https://doi.org/10.5194/asr-16-75-2019, https://doi.org/10.5194/asr-16-75-2019, 2019
Short summary
Short summary
During recent years, Germany’s national meteorological service has significantly expanded the open access to its climate observations. To improve the interactive and user-friendly access to the data, a new data portal has been developed. The portal serves a variety of user requirements that result from the broad range of applications of DWD’s climate data. The focus of the recent developments was on improved access to German station data.
Hannu Valta, Ilari Lehtonen, Terhi K. Laurila, Ari Venäläinen, Mikko Laapas, and Hilppa Gregow
Adv. Sci. Res., 16, 31–37, https://doi.org/10.5194/asr-16-31-2019, https://doi.org/10.5194/asr-16-31-2019, 2019
Short summary
Short summary
A comparison of forest damage with windstorm intensity in Finland suggests that the volume of forest damage follows approximately a power relation as a function of wind gust speed with a power of ~10. This tentative estimate holds for typical windstorms having mainly westerly winds and affecting large areas in southern and central parts of Finland. The estimate can be utilized when preparing impact-based predictions of windstorms.
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019, https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
Short summary
Earth observation satellites routinely monitor sea-surface temperature. However, they require in situ references for calibration and validation. To support this step, drifting buoys carrying sensors with improved calibration were deployed. This paper finds that sea state and immersion depth are important to better understand the buoy measurements. A new drifting buoy was designed as a result, in the framework of the European Union Copernicus program, with an accuracy found to be within 0.01 °C.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Tiina Ervasti, Hilppa Gregow, Andrea Vajda, Terhi K. Laurila, and Antti Mäkelä
Adv. Sci. Res., 15, 99–106, https://doi.org/10.5194/asr-15-99-2018, https://doi.org/10.5194/asr-15-99-2018, 2018
Short summary
Short summary
An online survey was used to map the needs and preferences of the Finnish general public about extended-range forecasts and their presentation. Survey results guided the co-design process of novel extended-range forecasts in the project. The respondents considered that the tailored extended-range forecasts would be beneficial in planning activities, preparing for weather risks and scheduling everyday life. They also valued impact information higher than advice on how to prepare for the impacts.
Atte Harjanne, Riina Haavisto, Heikki Tuomenvirta, and Hilppa Gregow
Adv. Sci. Res., 14, 293–304, https://doi.org/10.5194/asr-14-293-2017, https://doi.org/10.5194/asr-14-293-2017, 2017
Short summary
Short summary
Weather, climate and climate change can cause significant risks to businesses and public administration. By asking Finnish organizations about their weather and climate risk perceptions and management, this study aims to improve ways climate services can support in adapting to current and future climate. The results indicate that climate risk management is often de-centralized and relies on expert networks but that practices differ between actors.
Taru Olsson, Tuuli Perttula, Kirsti Jylhä, and Anna Luomaranta
Adv. Sci. Res., 14, 231–239, https://doi.org/10.5194/asr-14-231-2017, https://doi.org/10.5194/asr-14-231-2017, 2017
Short summary
Short summary
A new national daily snowfall record was measured in Finland in January 2016 when it snowed 73 cm in less than a day at a small town on the western coast of Finland. The area of the most intense snowfall was very small, which is common in convective precipitation. In this work we used hourly weather radar images to identify the sea-effect snowfall case and found that a weather prediction model worked quite well in simulating the snowbands.
Kai-Uwe Eiselt, Frank Kaspar, Thomas Mölg, Stefan Krähenmann, Rafael Posada, and Jens O. Riede
Adv. Sci. Res., 14, 163–173, https://doi.org/10.5194/asr-14-163-2017, https://doi.org/10.5194/asr-14-163-2017, 2017
Short summary
Short summary
As one element of the SASSCAL initiative (a cooperation of Angola, Botswana, Namibia, Zambia, South Africa and Germany) networks of automatic weather stations have been installed or improved in Southern Africa. Here we compare interpolation methods for monthly minimum and maximum temperatures which were calculated from hourly measurements. The best interpolation results have been achieved combining multiple linear regression with three dimensional inverse distance weighted interpolation.
Otto Hyvärinen, Antti Mäkelä, Matti Kämäräinen, and Hilppa Gregow
Adv. Sci. Res., 14, 89–93, https://doi.org/10.5194/asr-14-89-2017, https://doi.org/10.5194/asr-14-89-2017, 2017
Short summary
Short summary
Finnish Meteorological Institute and Helen Ltd examined the feasibility of long-range forecasts (longer than two weeks) of temperature for needs of the energy sector in Helsinki, Finland. In this study, we examined the quality of Heating degree day (HDD) forecasts. As the forecasts we used UK Met Office seasonal forecasts. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015–2016, up to two months, especially if the very cold January is excluded.
Matti Kämäräinen, Otto Hyvärinen, Kirsti Jylhä, Andrea Vajda, Simo Neiglick, Jaakko Nuottokari, and Hilppa Gregow
Nat. Hazards Earth Syst. Sci., 17, 243–259, https://doi.org/10.5194/nhess-17-243-2017, https://doi.org/10.5194/nhess-17-243-2017, 2017
Short summary
Short summary
Freezing rain is a high-impact wintertime weather phenomenon. The direct damage it causes to critical infrastructure (transportation, communication and energy) and forestry can be substantial. In this work a method for estimating the occurrence of freezing rain was evaluated and used to derive the climatology. The method was able to accurately reproduce the observed, spatially aggregated annual variability. The highest frequencies of freezing rain were found in eastern and central Europe.
Frank Kaspar, Lisa Hannak, and Klaus-Jürgen Schreiber
Adv. Sci. Res., 13, 163–171, https://doi.org/10.5194/asr-13-163-2016, https://doi.org/10.5194/asr-13-163-2016, 2016
Short summary
Short summary
Germany's national meteorological service (DWD) operates a network of so-called climate reference stations. At these stations parallel measurements are performed in order to allow the comparison of manual and automatic observations. We present an analysis of parallel measurements of temperature at 2 m height. It is shown that the automation of stations did not cause an artificial increase in the series of daily mean temperature. A bias occurs for maximum temperature in specific configurations.
Michael Borsche, Andrea K. Kaiser-Weiss, and Frank Kaspar
Adv. Sci. Res., 13, 151–161, https://doi.org/10.5194/asr-13-151-2016, https://doi.org/10.5194/asr-13-151-2016, 2016
Short summary
Short summary
Wind speeds derived from the regional reanalysis COSMO-REA6 and from two global reanalyses of ECMWF (ERA-Interim and ERA-20C) have been compared to tower measurements covering heights from 10 m up to 140 m, located in the North Sea, in The Netherlands, and in Northeast Germany. In general, the monthly and hourly mean values of COSMO-REA6 are at least as close to the measurements as the global reanalyses, and in the correlation of daily means an added value of COSMO-REA6 is found.
Ilari Lehtonen, Matti Kämäräinen, Hilppa Gregow, Ari Venäläinen, and Heli Peltola
Nat. Hazards Earth Syst. Sci., 16, 2259–2271, https://doi.org/10.5194/nhess-16-2259-2016, https://doi.org/10.5194/nhess-16-2259-2016, 2016
Short summary
Short summary
We studied the impact of projected climate change on the risk of snow-induced forest damage in Finland. Although winters are projected to become milder over the whole of Finland, our results suggest than in eastern and northern Finland the risk may increase while in southern and western parts of the country it is projected to decrease. This indicates that there is increasing need to consider the potential of snow damage in forest management in eastern and northern Finland.
Rafael Posada, Domingos Nascimento, Francisco Osvaldo S. Neto, Jens Riede, and Frank Kaspar
Adv. Sci. Res., 13, 97–105, https://doi.org/10.5194/asr-13-97-2016, https://doi.org/10.5194/asr-13-97-2016, 2016
Short summary
Short summary
To respond to the challenges of climate change, Angola, Botswana, Germany, Namibia, South Africa and Zambia have initiated the regional competence centre SASSCAL. As part of the initiative, Deutscher Wetterdienst (DWD) cooperates with the meteorological services of Angola, Botswana and Zambia to improve the management of climate data. First results of the cooperation between DWD and the Angolan Meteorological Services (INAMET) are presented in order to provide hints for comparable activities.
I. Lehtonen, A. Venäläinen, M. Kämäräinen, H. Peltola, and H. Gregow
Nat. Hazards Earth Syst. Sci., 16, 239–253, https://doi.org/10.5194/nhess-16-239-2016, https://doi.org/10.5194/nhess-16-239-2016, 2016
Short summary
Short summary
The number of large forest fires in Finland will most likely increase during the twenty-first century in response to projected climate change. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to effective fire suppression. However, our results show considerable inter-model variability, demonstrating the large uncertainty related to the rate of the projected change in forest-fire danger.
M. Borsche, A. K. Kaiser-Weiss, P. Undén, and F. Kaspar
Adv. Sci. Res., 12, 207–218, https://doi.org/10.5194/asr-12-207-2015, https://doi.org/10.5194/asr-12-207-2015, 2015
Short summary
Short summary
Within the European Union’s seventh Framework Programme project Uncertainties in Ensembles of Regional Re-Analyses (UERRA), ensembles of RRAs covering the European area are produced and their uncertainties are quantified. In this study, we discuss different methods for quantifying the uncertainty of RRAs in order to answer the question to which extent the smaller scale information (or resulting statistics) provided by the RRAs can be relied on.
A. K. Kaiser-Weiss, F. Kaspar, V. Heene, M. Borsche, D. G. H. Tan, P. Poli, A. Obregon, and H. Gregow
Adv. Sci. Res., 12, 187–198, https://doi.org/10.5194/asr-12-187-2015, https://doi.org/10.5194/asr-12-187-2015, 2015
Short summary
Short summary
Wind speed measured at the German stations correlate well with reanalysis fields. Monthly means from two global reanalyses (ERA-20C, ERA-Interim) and one regional reanalysis (COSMO-REA6) were analysed and correlate well for the majority of the German stations. Thus we conclude that the monthly and seasonal anomalies recorded at these stations can be understood as representative for a spatial area comparable to the resolution of the reanalyses, at least for the recent years.
F. Kaspar, J. Helmschrot, A. Mhanda, M. Butale, W. de Clercq, J. K. Kanyanga, F. O. S. Neto, S. Kruger, M. Castro Matsheka, G. Muche, T. Hillmann, K. Josenhans, R. Posada, J. Riede, M. Seely, C. Ribeiro, P. Kenabatho, R. Vogt, and N. Jürgens
Adv. Sci. Res., 12, 171–177, https://doi.org/10.5194/asr-12-171-2015, https://doi.org/10.5194/asr-12-171-2015, 2015
Short summary
Short summary
One task of the “Southern African Science Service Centre for Climate Change and Adaptive Land Management” (www.sasscal.org) is the provision of climate data for Southern Africa. Extension and improvements of observational networks in Angola, Botswana, Namibia, Zambia and South Africa are supported. This effort is complemented by an improvement of climate data management at national weather authorities, capacity building activities and an extension of the data bases with historical climate data.
P. Jokinen, A. Vajda, and H. Gregow
Adv. Sci. Res., 12, 97–101, https://doi.org/10.5194/asr-12-97-2015, https://doi.org/10.5194/asr-12-97-2015, 2015
Short summary
Short summary
Emergency rescue data and weather reanalysis data were combined to study the spatial and decadal characteristics of potential forest damage days in Finland due to windstorms. The most prone area for damage days was the south-western part of Finland. Results also indicated a lull period during the 1990s compared to the 1980s and 2000s, albeit no trend was evident. The study highlighted the importance of not only focusing on wind speeds, but also soil conditions.
F. Kaspar, B. Tinz, H. Mächel, and L. Gates
Adv. Sci. Res., 12, 57–61, https://doi.org/10.5194/asr-12-57-2015, https://doi.org/10.5194/asr-12-57-2015, 2015
Short summary
Short summary
Germany’s national meteorological service (Deutscher Wetterdienst, DWD) houses in Offenbach and Hamburg huge archives of historical handwritten journals of weather observations. They comprise not only observations from Germany, but also of the oceans and land stations in many parts of the world. DWD works on the digitisation and quality control of these archives. The paper presents the current status.
O. Hyvärinen, L. Mtilatila, K. Pilli-Sihvola, A. Venäläinen, and H. Gregow
Adv. Sci. Res., 12, 31–36, https://doi.org/10.5194/asr-12-31-2015, https://doi.org/10.5194/asr-12-31-2015, 2015
Short summary
Short summary
We assessed the quality of the seasonal precipitation forecasts issued by Regional Climate Outlook Forum for Malawi and Zambia. The forecasts, issued in August, are of rainy season rainfall accumulations for early and late season. The forecasts are rather well-calibrated, but cannot discriminate between different events. But these results can be too pessimistic, because forecasts have gone through much development lately, and forecasts using current methodology might have performed better.
F. Kaspar, K. Zimmermann, and C. Polte-Rudolf
Adv. Sci. Res., 11, 93–99, https://doi.org/10.5194/asr-11-93-2014, https://doi.org/10.5194/asr-11-93-2014, 2014
Short summary
Short summary
Plant phenology is the study of periodically recurring patterns of growth and development of plants during the year. First plant phenological observations have been performed in Germany already in the 18th century. Today, Germany’s national meteorological service (Deutscher Wetterdienst, DWD) maintains a dense phenological observation network and a database with phenological observations.
P. Räisänen, A. Luomaranta, H. Järvinen, M. Takala, K. Jylhä, O. N. Bulygina, K. Luojus, A. Riihelä, A. Laaksonen, J. Koskinen, and J. Pulliainen
Geosci. Model Dev., 7, 3037–3057, https://doi.org/10.5194/gmd-7-3037-2014, https://doi.org/10.5194/gmd-7-3037-2014, 2014
Short summary
Short summary
Snowmelt influences greatly the climatic conditions in spring. This study evaluates the timing of springtime end of snowmelt in the ECHAM5 model. A key finding is that, in much of northern Eurasia, snow disappears too early in ECHAM5, in spite of a slight cold bias in spring. This points to the need for a more comprehensive treatment of the surface energy budget. In particular, the surface temperature for the snow-covered and snow-free parts of a climate model grid cell should be separated.
Y. Gao, T. Markkanen, L. Backman, H. M. Henttonen, J.-P. Pietikäinen, H. M. Mäkelä, and A. Laaksonen
Biogeosciences, 11, 7251–7267, https://doi.org/10.5194/bg-11-7251-2014, https://doi.org/10.5194/bg-11-7251-2014, 2014
Short summary
Short summary
This work studies the biogeophysical impacts of peatland forestation on regional climate conditions in Finland by a regional climate model with two land cover maps produced from Finnish national forest inventories. A warming in spring and a slight cooling in the growing season are found in peatland forestation area, which are mainly induced by the decreased surface albedo and increased ET, respectively. The snow clearance days are advanced. The results are also compared with observational data.
F. Kaspar, G. Müller-Westermeier, E. Penda, H. Mächel, K. Zimmermann, A. Kaiser-Weiss, and T. Deutschländer
Adv. Sci. Res., 10, 99–106, https://doi.org/10.5194/asr-10-99-2013, https://doi.org/10.5194/asr-10-99-2013, 2013
K.-G. Karlsson, A. Riihelä, R. Müller, J. F. Meirink, J. Sedlar, M. Stengel, M. Lockhoff, J. Trentmann, F. Kaspar, R. Hollmann, and E. Wolters
Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, https://doi.org/10.5194/acp-13-5351-2013, 2013
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, https://doi.org/10.5194/acp-13-3743-2013, 2013
Cited articles
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Hollingsworth, A. and Pfrang, C.: A preliminary survey of ERA-40 users developing applications of relevance to GEO (Group on Earth Observations), ECMWF Newsletter, 104, 5–9, 2005.
Poli, P., Hersbach, H., Tan, D., Dee, D., Thépaut, J.-N., Simmons, A., Peubey, C., Laloyaux, P., Komori, T., Berrisford, P., Dragani, R., Trémolet, Y., Holm, E., Bonavita, M., Isaksen, L., and Fisher, M.: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C) ERA Report Series 14 available from ECMWF, Shinfield Park, Reading RG2 9AX, UK, available at: http://www.ecmwf.int/en/research/publications, last access: 16 April 2015, 2013.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Short summary
Many users of climate information are unaware of the availability of reanalysis feedback data and input observations, and uptake of feedback data is rather low. The most important factors limiting the use of this data is that the users feel that there is no easy interface to get the data or they do not find it at all. The relevant communities should invest resources to develop tools and provide training to bridge the gap between current capabilities and comprehensive exploitation of the data.
Many users of climate information are unaware of the availability of reanalysis feedback data...