Strategy for generation of climate change projections feeding Spanish impact community
María Pilar Amblar-Francés
AEMET, Sevilla, 41092, Spain
María Asunción Pastor-Saavedra
CORRESPONDING AUTHOR
AEMET, Madrid, 28040, Spain
María Jesús Casado-Calle
AEMET, Madrid, 28040, Spain
Petra Ramos-Calzado
AEMET, Sevilla, 41092, Spain
Ernesto Rodríguez-Camino
AEMET, Madrid, 28040, Spain
Related authors
María P. Amblar-Francés, Petra Ramos-Calzado, Jorge Sanchis-Lladó, Alfonso Hernanz-Lázaro, María C. Peral-García, Beatriz Navascués, Marta Dominguez-Alonso, María A. Pastor-Saavedra, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 17, 191–208, https://doi.org/10.5194/asr-17-191-2020, https://doi.org/10.5194/asr-17-191-2020, 2020
Short summary
Short summary
Climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this frame, the Pyrenees constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions. The impact of the scenarios becomes significant for the second half of the 21st century.
Jorge Tamayo, Ernesto Rodriguez-Camino, Alfonso Hernanz, and Sara Covaleda
Adv. Sci. Res., 19, 105–115, https://doi.org/10.5194/asr-19-105-2022, https://doi.org/10.5194/asr-19-105-2022, 2022
Short summary
Short summary
There has been developed for Central America downscaled climate change scenarios using the same methodology, that allows a joint analysis for the whole region. The high number of simulations improves the situation prior to the start of the action, where each country had a limited number of projections that differed in terms of background information, methodology and resolution. A web based viewer allows consultations and download on 37 different climatic variables and derived indices.
María P. Amblar-Francés, Petra Ramos-Calzado, Jorge Sanchis-Lladó, Alfonso Hernanz-Lázaro, María C. Peral-García, Beatriz Navascués, Marta Dominguez-Alonso, María A. Pastor-Saavedra, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 17, 191–208, https://doi.org/10.5194/asr-17-191-2020, https://doi.org/10.5194/asr-17-191-2020, 2020
Short summary
Short summary
Climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this frame, the Pyrenees constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions. The impact of the scenarios becomes significant for the second half of the 21st century.
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Esteban Rodríguez-Guisado, Antonio Ángel Serrano-de la Torre, Eroteida Sánchez-García, Marta Domínguez-Alonso, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 16, 191–199, https://doi.org/10.5194/asr-16-191-2019, https://doi.org/10.5194/asr-16-191-2019, 2019
Short summary
Short summary
In the frame of MEDSCOPE project, a seasonal forecast empirical model for the Mediterranean is proposed. It uses a sub regions based set up, with different inputs for every area, from an initial set of global climate indices. However, is configurated to be able to easily incorporate other sources of information. Results show spatially consistent structure, and measurements of its skill shows it performs at the level (and better over some areas) of main dynamical models for seasonal forecasting.
Eroteida Sánchez-García, José Voces-Aboy, Beatriz Navascués, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 16, 165–174, https://doi.org/10.5194/asr-16-165-2019, https://doi.org/10.5194/asr-16-165-2019, 2019
Short summary
Short summary
We have described a methodology for ensemble member’s weighting of operational seasonal forecasting systems based on an enhanced prediction of a driver of climate variability strongly affecting certain climate variables (e.g. temperature, precipitation) over a certain region. We have applied it to the North Atlantic Oscillation influence on the Iberian Peninsula winter precipitation. This approach is fully general and consequently applicable to any other SFS providing a skilful NAO signal.
Jose Voces-Aboy, Inmaculada Abia-Llera, Eroteida Sánchez-García, Beatriz Navascués, Ernesto Rodríguez-Camino, María Nieves Garrido-del-Pozo, María Concepción García-Gómez, José Adolfo Álvarez-González, and Fernando Pastor-Argüello
Adv. Sci. Res., 16, 157–163, https://doi.org/10.5194/asr-16-157-2019, https://doi.org/10.5194/asr-16-157-2019, 2019
Short summary
Short summary
This is a web-based toolbox created to support decision-making process by water managers in Spanish reservoirs. It provides a set of tools to explore hydrologic variability linked to climate variability and a precipitation/reservoir inflow seasonal forecast over Spain.
Cited articles
Amblar-Francés, P., Casado-Calle, M. J., Pastor-Saavedra, M. A.,
Ramos-Calzado, P., and Rodríguez-Camino, E.: Guía de escenarios
regionalizados de cambio climático sobre España a partir de los
resultados del IPCC-AR5, available at:
https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/Guia_escenarios_AR5/Guia_escenarios_AR5.pdf
(last access: 27 July 2018), 2017.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010GL046270, 2011.
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N.,
Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R.,
Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies,
S., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model:
description, control climate and evaluation, Aust. Meteorol. Ocean.,
63, 41–64, 2013.
Brunet, M., Casado, M. J., de Castro, M., Galán, P., López, J. A.,
Martín, J. M., Pastor, A., Petisco, E., Ramos, P., Ribalaygua, J.,
Rodríguez, E., Sanz, I., and Torre, L.: Generación de escenarios
regionalizados de cambio climático para España, Ministerio de Medio
Ambiente Medio Rural y Marino, Madrid, 165 pp., 2008.
Bruyère, C. L., Done, J. M., Holland, G. J., and Fredrick, S.: Bias
corrections of global models for regional climate simulations of high-impact
weather, Clim. Dynam., 43, 1847–1856, https://doi.org/10.1007/s00382-013-2011-6, 2014.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate during this century, Climatic
Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen,
J. H., Rockel, B., Jacob, D., Kjellström, E., Castro, M., and van den
Hurk, B.: An intercomparison of regional climate simulations for Europe:
assessing uncertainties in model projections, Climatic Change, 81, 53–70, 2007.
Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C. M., Jacob, D.,
Lenderink, G., and Christensen, O. B.: The spread amongst ENSEMBLES regional
scenarios: regional climate models, driving general circulation models and
interannual variability, Clim. Dynam., 38, 951–964, https://doi.org/10.1007/s00382-011-1053-x, 2012.
Domínguez, M., Romera, R., Sánchez, E., Fita, L., Fernández,
J., Jiménez-Guerrero, P., Montávez, J. P., Cabos, W. D., Liguori, G.,
and Gaertner, M. A.: Present climate precipitation and temperature extremes
over Spain from a set of high resolution RCM, Clim. Res., 58, 149–164, https://doi.org/10.3354/cr01186, 2013.
Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao,
M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J.,
Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T.,
Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R.,
Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly,
P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V.,
Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J.,
Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The dynamical
core, physical parameterizations, and basic simulation characteristics of
the atmospheric component AM3 of the GFDL global coupled model CM3, J. Climate, 24, 3484–3519, 2011.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethe, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, 2013.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: 2007. Linking climate change
modelling to impacts studies: recent advances in downscaling techniques for
hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5,
572–597, https://doi.org/10.1002/jame.20038, 2013.
Giorgi, F.: Climate change hot spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F., Jones, C., and Asrar, G.: Addressing climate information needs
at the regional level: The cordex framework, WMO Bull., 58, 175–183, 2009.
Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowalczyk, E.
A., O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier,
M. A., Watterson, I. G., and Elliott, T. I.: The CSIRO Mk3 climate system
model, CSIRO Atmospheric Research Technical Paper No. 60, CSIRO, Australia,
2002.
Gutiérrez, J., San-Martin, D., Brands, S., Manzanas, R., and Herrera, S.:
Reassessing statistical downscaling techniques for their robust application
under climate change conditions, J. Climate, 26, 171–188,
https://doi.org/10.1175/JCLI-D-11-00687.1, 2013.
Gutiérrez, J. M., Maraun, D., Widman, M., Huth, R., Hertig, E., Benestad,
R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martin, D.,
Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M.,
Dubrovsky, M., Ribalaygua, J., Portoles, J., Raty, O., Raisanen, J., Hingray,
B., Raynaud, D., Casado, M. J., Ramos, P., Zerenner, T., Turco, M., Bosshard,
T., Stepanek, P., Bartholy, J., Pongracz, R., Keller, D. E., Fischer, A. M.,
Cardoso, R. M., Soares, P. M. M., Czernecki, B., and Page, C.: An
intercomparison of a large ensemble of statistical downscaling methods over
Europe: Results from the VALUE perfect predictor cross-validation
experiment, Int. J. Climatol., https://doi.org/10.1002/joc.5462, 2018.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus,
S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and
Marshall, S.: The community earth system model: a framework for
collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013.
IPCC Climate Change: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535
pp., available at: http://www.ipcc.ch/report/ar5/ (last access:
25 May 2018), 2013.
Jacob, D., Barring, L., Christensen, O. B., Christensen, J. H., Castro, M.,
Déqué, M., Giorgi, F., Stefan Hagemann, S., Hirschi , M., Jones, R.,
Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., Schär,
C., Seneviratne, S. I., Somot, S., van Ulden, A., and van den Hurk, B.: An
inter-comparison of regional climate models for Europe: model performance in
present-day climate, Clim. Change, 81, 31–52,
https://doi.org/10.1007/s10584-006-9213-4, 2007.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski,
G., Georgopoulou, E., Gobiet, A., Menut, L.,
Nikulin, G., Haensler, A., Hempelmann, N., Jones,
C., Keuler, K., Kovats, S., Kröner,
N., Kotlarski, S., Kriegsmann, A., Martin,
E., van Meijgaard, E., Moseley, C., Pfeifer,
S., Preuschmann, S., Radermacher, C., Radtke,
K., Rechid, D., Rounsevell, M., Samuelsson,
P., Somot, S., Soussana, J. F., Teichmann,
C., Valentini, R., Vautard, R., Weber,
B., and Yiou, P.: EURO-CORDEX: new high-resolution climate
change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Ji, D., Wang, L., Feng, J., Wu, Q., Cheng, H., Zhang, Q., Yang, J., Dong, W.,
Dai, Y., Gong, D., Zhang, R.-H., Wang, X., Liu, J., Moore, J. C., Chen, D.,
and Zhou, M.: Description and basic evaluation of Beijing Normal University
Earth System Model (BNU-ESM) version 1, Geosci. Model Dev., 7, 2039–2064,
https://doi.org/10.5194/gmd-7-2039-2014, 2014.
Jiménez-Guerrero, P., Montávez, J. P., Domínguez, M., Romera,
R., Fita, L., Fernández, J., Cabos, W. D., Liguori, G., and Gaertner,
M. A.: Mean fields and interannual variability in RCM simulations over Spain:
the ESCENA project, Clim. Res., 57, 201–220, https://doi.org/10.3354/cr01165,
2013.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themessl, M., Venema, V.
K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Martin, G. M., Bellouin, N., Collins, W. J.,
Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C.
D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J.,
Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R.,
Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher,
M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T.,
Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James,
P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M.,
Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C.,
Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A.,
Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2
family of Met Office Unified Model climate configurations, Geosci. Model
Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Morata-Gasca, A.: Guía de escenarios regionalizados de cambio
climático sobre España a partir de los resultados del IPCC-AR4,
available at:
http://www.aemet.es/documentos/es/conocermas/publicaciones/Guia_IPCC/Guia_IPCC.pdf
(last access: 25 May 2018), 2014.
Petisco de Lara, S. E.: Método de regionalización de
precipitación basado en análogos. Explicación y Validación,
Nota Técnica 3A, Área de Evaluación y Modelización del Cambio
Climático, AEMET, Madrid, Spain, 2008a.
Petisco de Lara, S. E.: Método de regionalización de temperatura
basado en análogos. Explicación y Validación, Nota Técnica
3B, Área de Evaluación y Modelización del Cambio Climático,
AEMET, Madrid, Spain, 2008b.
Rummukainen, M.: State-of-the-art with Regional Climate Models, Wires. Clim. Change, 1, 82–96, 2010.
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini,
E., Vichi, M., Oddo, P., and Navarra, A.: Effects of Tropical Cyclones on
Ocean Heat Transport in a High Resolution Coupled General Circulation Model,
J. Climate, 24, 4368–4384, 2011.
Trzaska, S. and Schnarr, E.: A Review of Downscaling Methods for Climate
Change Projections: African and Latin American Resilience to Climate Change
(ARCC), available at:
http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf (last
access: 28 May 2018), 2014.
van der Linden, P. and Mitchell, J. F. B.: ENSEMBLES: Climate Change and its
impacts: summary of research and results from the ENSEMBLES project, Met
Office Hadley Centre, Exeter EX1 3PB, UK, 160, 2009.
Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué,
M., Fernández, J., García-Díez, M., Goergen, K., Güttler,
I., Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski, S.,
Mayer, S., van Meijgaard, E., Nikulin, G., Patarcic, M., Scinocca, J.,
Sobolowski, S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer,
V., and Yiou, P.: The simulation of European heat waves from an ensemble of
regional climate models within the EURO-CORDEX project, Clim. Dynam., 41, 2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013.
Voldoire, A., Sanchez-Gomez, E., and Mélia, D. S., Decharme, B., Cassou,
C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M.,
Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G.,
Maisonnave, E., Moine, M. P., Planton, S., Saint-Martin, D., Szopa, S.,
Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin,
F.: The CNRM-CM5. 1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, 2013.
Volodin, E. M., Dianskii, N. A., and Gusev, A. V.: Simulating present-day
climate with the INMCM4. 0 coupled model of the atmospheric and oceanic
general circulations, IZV Atmos. Ocean. Phy.+, 46,
414–431, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H.,
Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E.,
Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description
and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872,
https://doi.org/10.5194/gmd-4-845-2011, 2011.
Weare, B. C., Cagnazzo, C., Fogli, P. G., Manzini, E., and Navarra, A.:
Madden-Julian Oscillation in a climate model with a well-resolved
stratosphere, J. Geophys. Res.-Atmos., 117, D01103,
https://doi.org/10.1029/2011JD016247, 2012.
Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., and
Mearns, L. O.: Guidelines for use of climate scenarios developed from
statistical downscaling methods, Supporting material of the Intergovernmental
Panel on Climate Change, available from the DDC of IPCC TGCIA, 27, TGICA-9:
24–25 September 2004, Laxenburg, Austria, 2004.
Wilby, R. L. and Dessai, S.: Robust adaptation to climate change, Weather,
65, 180–185, 2010.
Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., Zhang, Y., Li, J., Zhang,
F., Wei, M., Shi, X., Wu, F., Zhang, L., Chu, M., Jie, W., Liu, Y., Wang,
F., Liu, X., Li, Q., Dong, M., Liang, X., Gao, Y., and Zhang, J.: Global
carbon budgets simulated by the Beijing Climate Center Climate System Model
for the last century, J. Geophys. Res.-Atmos., 118,
4326–4347, https://doi.org/10.1002/jgrd.50320, 2013.
Xiao-Ge, X., Tong-Wen, W., Jiang-Long, L., Zai-Zhi, W., Wei-Ping, L., and
Fang-Hua, W.: How well does BCC_CSM1.1 reproduce the 20th
century climate change over China?, Atmospheric and Oceanic Science Letters,
6, 21–26, 2013.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara,
M., Tanaka, T. Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S.,
Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A new global
climate model of the Meteorological Research Institute: MRI-CGCM3 – model
description and basic performance, J. Meteorol. Soc. Jpn., 90, 23–64,
https://doi.org/10.2151/jmsj.2012-A02, 2012.
Short summary
The Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference downscaled regional climate change projections over Spain. Its strategy aims at exploiting all the available sources of information on climate change projections. In the future this service aims at complementing the Copernicus Climate Change Service (C3S) in terms of resolution, expression of uncertainty, visualization, tailored adjustments and reinforcement of links with national users.
The Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference...