Using the ECMWF OpenIFS model and state-of-the-art training techniques in meteorological education
Gabriella Szépszó
CORRESPONDING AUTHOR
European Centre for Medium-Range Weather Forecasts, Reading, UK
Hungarian Meteorological Service, Budapest, Hungary
Victoria Sinclair
University of Helsinki, Helsinki, Finland
Glenn Carver
European Centre for Medium-Range Weather Forecasts, Reading, UK
Related authors
No articles found.
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
Atmos. Chem. Phys., 25, 511–533, https://doi.org/10.5194/acp-25-511-2025, https://doi.org/10.5194/acp-25-511-2025, 2025
Short summary
Short summary
This study investigates the influence of valley floor inclination on diurnal winds and passive tracer transport within idealised mountain valleys using numerical simulations. The valley inclination strengthens the daytime up-valley winds but only up to a certain point. Beyond that critical angle, the winds weaken again. The inclined valleys transport the tracers higher up in the free troposphere, which would, for example, lead to higher potential for long-range transport.
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research, 3, 15–44, https://doi.org/10.5194/ar-3-15-2025, https://doi.org/10.5194/ar-3-15-2025, 2025
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto–La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025, https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETCs) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Daniel Köhler, Petri Räisänen, Tuomas Naakka, Kalle Nordling, and Victoria A. Sinclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3713, https://doi.org/10.5194/egusphere-2024-3713, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We study the impacts of globally increasing sea surface temperatures and sea-ice loss on the atmosphere in wintertime. In future climates, the jet stream shifts southward over the North Atlantic and extends further over Europe. Increasing sea surface temperatures drive these changes. The region of high activity of low-pressure systems is projected to move east towards Europe. Future increasing sea surface temperatures and sea-ice loss contribute with similar magnitude to the eastward shift.
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman
EGUsphere, https://doi.org/10.5194/egusphere-2024-3458, https://doi.org/10.5194/egusphere-2024-3458, 2024
Short summary
Short summary
The effects on polar climates of warmer sea surface temperatures and decreasing sea ice cover have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and VIctoria Anne SInclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3019, https://doi.org/10.5194/egusphere-2024-3019, 2024
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing 92 most damaging windstorms (2005–2018). The southwest- and northwest-originating windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Clément Bouvier, Daan van den Broek, Madeleine Ekblom, and Victoria A. Sinclair
Geosci. Model Dev., 17, 2961–2986, https://doi.org/10.5194/gmd-17-2961-2024, https://doi.org/10.5194/gmd-17-2961-2024, 2024
Short summary
Short summary
An analytical initial background state has been developed for moist baroclinic wave simulation on an aquaplanet and implemented into OpenIFS. Seven parameters can be controlled, which are used to generate the background states and the development of baroclinic waves. The meteorological and numerical stability has been assessed. Resulting baroclinic waves have proven to be realistic and sensitive to the jet's width.
Victoria A. Sinclair and Jennifer L. Catto
Weather Clim. Dynam., 4, 567–589, https://doi.org/10.5194/wcd-4-567-2023, https://doi.org/10.5194/wcd-4-567-2023, 2023
Short summary
Short summary
We studied the relationship between the strength of mid-latitude cyclones and their precipitation, how this may change in the future, and whether it depends of the type of cyclone. The relationship between cyclone strength and precipitation increases in warmer climates and depends strongly on the type of cyclone. For some cyclone types there is no relation between cyclone strength and precipitation. For all cyclone types, precipitation increases with uniform warming and polar amplification.
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
Atmos. Chem. Phys., 23, 4559–4576, https://doi.org/10.5194/acp-23-4559-2023, https://doi.org/10.5194/acp-23-4559-2023, 2023
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from January to May 2018 at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. With state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023, https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary
Short summary
Local winds in four valleys located in the Nepal Himalayas are studied by means of high-resolution meteorological modelling. Well-defined daytime up-valley winds are simulated in all of the valleys with some variation in the flow depth and strength among the valleys and their parts. Parts of the valleys with a steep valley floor inclination (2–5°) are associated with weaker and shallower daytime up-valley winds compared with the parts that have nearly flat valley floors (< 1°).
Vincent Huijnen, Philippe Le Sager, Marcus O. Köhler, Glenn Carver, Samuel Rémy, Johannes Flemming, Simon Chabrillat, Quentin Errera, and Twan van Noije
Geosci. Model Dev., 15, 6221–6241, https://doi.org/10.5194/gmd-15-6221-2022, https://doi.org/10.5194/gmd-15-6221-2022, 2022
Short summary
Short summary
We report on the first implementation of atmospheric chemistry and aerosol as part of the OpenIFS model, based on the CAMS global model. We give an overview of the model and evaluate two reference model configurations, with and without the stratospheric chemistry extension, against a variety of observational datasets. This OpenIFS version with atmospheric composition components is open to the scientific user community under a standard OpenIFS license.
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irene Erner, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary
Short summary
We investigate the boundary-layer (BL) height and surface stability in southern Finland using radiosondes, a microwave radiometer and ERA5 reanalysis. Accurately quantifying the BL height is challenging, and the diagnosed BL height can depend strongly on the method used. Microwave radiometers provide reliable estimates of the BL height but only in unstable conditions. ERA5 captures the BL height well except under very stable conditions, which occur most commonly at night during the warm season.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Xavier Yepes-Arbós, Gijs van den Oord, Mario C. Acosta, and Glenn D. Carver
Geosci. Model Dev., 15, 379–394, https://doi.org/10.5194/gmd-15-379-2022, https://doi.org/10.5194/gmd-15-379-2022, 2022
Short summary
Short summary
Climate prediction models produce a large volume of simulated data that sometimes might not be efficiently managed. In this paper we present an approach to address this issue by reducing the computing time and storage space. As a case study, we analyse the output writing process of the ECMWF atmospheric model called IFS, and we integrate into it a data writing tool called XIOS. The results suggest that the integration between the two components achieves an adequate computational performance.
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021, https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
Pirkka Ollinaho, Glenn D. Carver, Simon T. K. Lang, Lauri Tuppi, Madeleine Ekblom, and Heikki Järvinen
Geosci. Model Dev., 14, 2143–2160, https://doi.org/10.5194/gmd-14-2143-2021, https://doi.org/10.5194/gmd-14-2143-2021, 2021
Short summary
Short summary
OpenEnsemble 1.0 is a novel dataset that aims to open ensemble or probabilistic weather forecasting research up to the academic community. The dataset contains atmospheric states that are required for running model forecasts of atmospheric evolution. Our capacity to observe the atmosphere is limited; thus, a single reconstruction of the atmospheric state contains some errors. Our dataset provides sets of 50 slightly different atmospheric states so that these errors can be taken into account.
Victoria A. Sinclair, Mika Rantanen, Päivi Haapanala, Jouni Räisänen, and Heikki Järvinen
Weather Clim. Dynam., 1, 1–25, https://doi.org/10.5194/wcd-1-1-2020, https://doi.org/10.5194/wcd-1-1-2020, 2020
Short summary
Short summary
We studied how mid-latitude cyclones are likely to change in the future. We used a state-of-the-art numerical model and performed a control and a
warmexperiment. The total number of cyclones did not change with warming and neither did the average strength, but there were more stronger and more weaker storms in the warm experiment. Precipitation associated with the most extreme mid-latitude cyclones increased by up to 50 % and occurred in a more poleward location in the warmer experiment.
Minttu Tuononen, Ewan J. O'Connor, and Victoria A. Sinclair
Atmos. Chem. Phys., 19, 1985–2000, https://doi.org/10.5194/acp-19-1985-2019, https://doi.org/10.5194/acp-19-1985-2019, 2019
Short summary
Short summary
Many applications require accurate forecasts of the amount of solar radiation reaching the surface, such as solar energy and UV radiation forecasts. This also means that cloud must be correctly forecast. We investigated the skill of these forecasts over Helsinki, Finland, using cloud and solar radiation observations. We found that there were errors in the model radiation forecast even when the clouds were correctly forecast, which we attribute to incorrect representation of the cloud properties.
Mika Rantanen, Jouni Räisänen, Juha Lento, Oleg Stepanyuk, Olle Räty, Victoria A. Sinclair, and Heikki Järvinen
Geosci. Model Dev., 10, 827–841, https://doi.org/10.5194/gmd-10-827-2017, https://doi.org/10.5194/gmd-10-827-2017, 2017
Short summary
Short summary
This paper describes new software OZO, which is a meteorological tool for both studying and research purposes. OZO can be used for investigating physical mechanisms affecting the development of extratropical cyclones. The software is an open-source tool and the distribution is supported by the authors. OZO will be used as a part of the author's PhD, in which the changes in cyclone dynamics due to warmer climate are studied.
Laura Riuttanen, Marja Bister, Veli-Matti Kerminen, Viju O. John, Anu-Maija Sundström, Miikka Dal Maso, Jouni Räisänen, Victoria A. Sinclair, Risto Makkonen, Filippo Xausa, Gerrit de Leeuw, and Markku Kulmala
Atmos. Chem. Phys., 16, 14331–14342, https://doi.org/10.5194/acp-16-14331-2016, https://doi.org/10.5194/acp-16-14331-2016, 2016
Short summary
Short summary
Here we show observational evidence that aerosols increase upper tropospheric humidity (UTH) via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause for this result indicating relevance for the global climate.
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
P. E. Haines, J. G. Esler, and G. D. Carver
Atmos. Chem. Phys., 14, 5477–5493, https://doi.org/10.5194/acp-14-5477-2014, https://doi.org/10.5194/acp-14-5477-2014, 2014
Cited articles
Balsamo, G. and Belward, A.: Lakes in weather prediction: a moving target,
ECMWF Newsletter, 150, p. 6, available at:
https://www.ecmwf.int/en/newsletter/150/news/lakes-weather-prediction-moving-target (last access: 2 April 2019), 2017.
Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts,
A. K., and Scipal, K.: A revised hydrology for the ECMWF model: Verification
from Field Site to Terrestrial Water Storage and Impact in the Integrated
Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1,
2009.
Bauer, P. and Richardson, D., New model cycle 40r1, ECMWF Newsletter, 138,
p. 3, available at:
https://www.ecmwf.int/en/elibrary/14581-newsletter-no-138-winter-2013-14 (last access: 2 April 2019), 2014.
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E. Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.,
Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L.,
Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X.,
and Køltzow, M.Ø.: The HARMONIE–AROME Model Configuration in the
ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/MWR-D-16-0417.1,
2017.
Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation of model
uncertainties in the ECMWF Ensemble Prediction System, Q. J. Roy. Meteor.
Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006, 1999.
Carver, G.: OpenIFS users explore atmospheric predictability, ECMWF
Newsletter, 153, 6–7, available at:
https://www.ecmwf.int/en/newsletter/153/news/openifs-users-explore-atmospheric-predictability (last access: 2 April 2019), 2017.
Carver, G., Váňa, F., Kertész, S., Källén, E., Sinclair,
V., and Järvinen, H.: University of Helsinki meeting on OpenIFS, ECMWF
Newsletter, 136, p. 4, available at:
http://www.ecmwf.int/sites/default/files/elibrary/2013/14593-newsletter-no136-summer-2013.pdf (last access: 2 April 2019), 2013.
Carver, G., Kertész, S., Váňa, F., Ferry, F., and Chabot, E.:
Météo-France hosts OpenIFS workshop, ECMWF Newsletter, 149,
2–3, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2016/16759-newsletter-no149-autumn-2016.pdf (last access: 2 April 2019), 2016.
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K.,
Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C.,
Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V.,
Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello,
P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero,
R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I.,
Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A 10-Year
Multidisciplinary Program on the Mediterranean Water Cycle, B. Am. Meteorol.
Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014.
ECMWF: Terms of use, available at: https://www.ecmwf.int/en/terms-use,
last access: 2 April 2019.
Fraedrich, K. and Müller, K.: Climate anomalies in Europe associated with
ENSO extremes, Int. J. Climatol., 12, 25–31, https://doi.org/10.1002/joc.3370120104,
1992.
Hannachi, A. and Carver, G.: Second OpenIFS user meeting at Stockholm
University, ECMWF Newsletter, 140, 2–3, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2014/14583-newsletter-no140-summer-2014.pdf (last access: 2 April 2019), 2014.
Hazeleger, W., Severijns, C., Semmler, T., Ştefănescu, S., Yang, S.,
Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault,
P., Caballero, R., Ekman, A. M., Christensen, J. H., van den Hurk, B.,
Jimenez, P., Jones, C., Kållberg, P., Koenigk, T., McGrath, R., Miranda,
P., van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F.,
Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and
Willén, U.: EC-Earth: A Seamless Earth-System Prediction Approach in
Action, B. Am. Meteorol. Soc., 91, 1357–1364, https://doi.org/10.1175/2010BAMS2877.1,
2010.
Held, I. and Suarez, M.: A proposal for the intercomparison of the dynamical
cores of atmospheric general circulation models, B. Am. Meteorol. Soc., 73,
1825–1830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2, 1994.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, A., Balsamo, G., Bechtold, P., Berrisford, P.,
Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R.,
Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes,
R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janisková, M., Laloyaux, P., Lopez, P.,
Muñoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut,
J-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational
global reanalysis: progress, future directions and synergies with NWP, ECMWF
ERA Report Series, 27, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2018/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp.pdf (last access: 2 April 2019),
2018.
Hogan, R. J. and Bozzo, A.: ECRAD: a new radiation scheme for the IFS, ECMWF
Technical Memorandum, 787, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2016/16901-ecrad-new-radiation-scheme-ifs.pdf (last access: 2 April 2019), 2016.
Leutbecher, M., Lock, S.-J., Ollinaho, P., Lang, S. T. K., Balsamo, G.,
Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E.,
English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R. J.,
Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart,
S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F., Wedi, N.,
and Weisheimer, A.: Stochastic representations of model uncertainties at
ECMWF: state of the art and future vision, Q. J. Roy. Meteor. Soc., 143,
2315–2339, https://doi.org/10.1002/qj.3094, 2017.
Lorenz, E. N.: Designing Chaotic Models, J. Atmos. Sci., 62, 1574–1587,
https://doi.org/10.1175/JAS3430.1, 2005.
Lorenz, E. N. and Emanuel, K. A.: Optimal Sites for Supplementary Weather
Observations: Simulation with a Small Model, J. Atmos. Sci., 55, 399–414,
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2, 1998.
Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kühnlein, C.,
Mozdzynski, G., Hamrud, M., and Smolarkiewicz, P.: A new grid for the IFS,
ECMWF Newsletter, 146, 23–28, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2016/17262-new-grid-ifs.pdf (last access: 2 April 2019), 2016.
Mironov, D. V.: Parameterization of lakes in numerical weather
prediction. Description of a lake model, COSMO Technical Report, 11,
Deutscher Wetterdienst, Offenbach am Main, Germany, available at:
http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport11.pdf (last access: 2 April 2019), 2008.
Morcrette, J. J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus,
R.: Impact of a new radiation package, McRad, in the ECMWF integrated
forecasting system, Mon. Weather Rev., 136, 4773–4798,
https://doi.org/10.1175/2008MWR2363.1, 2008.
Neale, R. B. and Hoskins, B. J.: A standard test for AGCMs and their physical
parameterizations I: The proposal, Atmos. Sci. Lett., 1, 101–107,
https://doi.org/10.1006/asle.2000.0022, 2000a.
Neale, R. B. and Hoskins, B. J.: A standard test for AGCMs and their physical
parameterizations II: Results for The Met. Office Model, Atmos. Sci. Lett.,
1, 108–114, https://doi.org/10.1006/asle.2000.0024, 2000b.
Pantillon, F., Chaboureau, J.-P., and Richard, E.: Vortex-vortex interaction
between Hurricane Nadine and an Atlantic cutoff dropping the predictability
over the Mediterranean, Q. J. Roy. Meteor. Soc., 142, 419–432,
https://doi.org/10.1002/qj.2635, 2015.
Plant, R. and Gray, S.: OpenIFS used by University of Reading students, ECMWF
Newsletter, 152, 6–7, available at:
https://www.ecmwf.int/en/newsletter/152/news/openifs-used-university-reading-students (last access: 2 April 2019), 2017.
Raoult, B., Bergeron, C., Alós, A. L., Thépaut, J.-N., and Dee, D.:
Climate service develops user-friendly data store, ECMWF Newsletter,
151, 22–27, available at:
https://www.ecmwf.int/en/newsletter/151/meteorology/climate-service-develops-user-friendly-data-store (last access: 2 April 2019), 2017.
Russell, I., Ii, F., Kertész, S., and Domínguez, J.-J.: Metview's
20th anniversary, ECMWF Newsletter, 138, p. 2, available at:
http://www.ecmwf.int/sites/default/files/elibrary/2013/14581-newsletter-no138-winter-201314.pdf (last access: 2 April 2019), 2014.
Shutts, G. J.: A kinetic energy backscatter algorithm for use in ensemble
prediction systems, Q. J. Roy. Meteor. Soc., 131, 3079–3102,
https://doi.org/10.1256/qj.04.106, 2005.
Szépszó, G.: OpenIFS Meteorological Evaluation, available at:
https://confluence.ecmwf.int/x/jxwXBQ (last access: 2 April 2019),
2018.
Szépszó, G. and Carver, G.: New forecast evaluation tool for OpenIFS,
ECMWF Newsletter, 156, 14–15, available at:
https://www.ecmwf.int/en/newsletter/156/news/new-forecast-evaluation-tool-openifs
(last access: 2 April 2019), 2018a.
Szépszó, G. and Carver, G.: OpenIFS reference case studies, available
at: http://download.ecmwf.int/test-data/openifs/reference_casestudies
(last access: 2 April 2019), 2018b.
Váňa, F. and Ahlgrimm, M.: An introduction to single-column
modelling, ECMWF eLearning online resources, available at:
https://www.ecmwf.int/assets/elearning/scm/story_html5.html (last access: 2 April 2019),
2018.
Short summary
The OpenIFS programme of ECMWF maintains a version of the ECMWF forecast model for use in education and research at universities, national meteorological services and other institutes. Application of OpenIFS as a training tool is wide ranging. The OpenIFS user meetings and training events demonstrate advanced and easy-to-use graphical tools and training technologies, e.g. OpenIFS and Metview “virtual machines”. This paper shows the education activity in the OpenIFS programme with some examples.
The OpenIFS programme of ECMWF maintains a version of the ECMWF forecast model for use in...