Assessing groundwater irrigation sustainability in the Euro-Mediterranean region with an integrated agro-hydrologic model
Emiliano Gelati
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Ispra, Italy
now at: Department of Geosciences, University of Oslo, Oslo, Norway
Zuzanna Zajac
European Commission, Joint Research Centre (JRC), Ispra, Italy
Andrej Ceglar
European Commission, Joint Research Centre (JRC), Ispra, Italy
Simona Bassu
European Commission, Joint Research Centre (JRC), Ispra, Italy
Bernard Bisselink
European Commission, Joint Research Centre (JRC), Ispra, Italy
Marko Adamovic
European Commission, Joint Research Centre (JRC), Ispra, Italy
Jeroen Bernhard
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Anna Malagó
European Commission, Joint Research Centre (JRC), Ispra, Italy
Marco Pastori
European Commission, Joint Research Centre (JRC), Ispra, Italy
Fayçal Bouraoui
European Commission, Joint Research Centre (JRC), Ispra, Italy
Ad de Roo
European Commission, Joint Research Centre (JRC), Ispra, Italy
Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Related authors
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Emiliano Gelati, Bertrand Decharme, Jean-Christophe Calvet, Marie Minvielle, Jan Polcher, David Fairbairn, and Graham P. Weedon
Hydrol. Earth Syst. Sci., 22, 2091–2115, https://doi.org/10.5194/hess-22-2091-2018, https://doi.org/10.5194/hess-22-2091-2018, 2018
Short summary
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet
Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, https://doi.org/10.5194/gmd-10-3889-2017, 2017
Short summary
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.
Anaïs Barella-Ortiz, Jan Polcher, Patricia de Rosnay, Maria Piles, and Emiliano Gelati
Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, https://doi.org/10.5194/hess-21-357-2017, 2017
Short summary
Short summary
L-band radiometry is considered to be one of the most suitable techniques for estimating surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM. This paper compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones. It shows that models and remote-sensed values agree well in temporal variability, but not in their spatial structures.
D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati
Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, https://doi.org/10.5194/hess-19-4811-2015, 2015
Short summary
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Vasileios Markantonis, Fabio Farinosi, Celine Dondeynaz, Iban Ameztoy, Marco Pastori, Luca Marletta, Abdou Ali, and Cesar Carmona Moreno
Nat. Hazards Earth Syst. Sci., 18, 1279–1296, https://doi.org/10.5194/nhess-18-1279-2018, https://doi.org/10.5194/nhess-18-1279-2018, 2018
Short summary
Short summary
This paper presents an integrated approach to assessing floods and droughts in the transboundary Mékrou River basin, West Africa, combining climatic trends analysis and a household survey. The multi-variable trend analysis estimates, at the biophysical level, the climate variability and the occurrence of floods and droughts. These results are coupled with household survey data that reveal the opinions of local residents, the observed climate variability, and the costs of floods and droughts.
Emiliano Gelati, Bertrand Decharme, Jean-Christophe Calvet, Marie Minvielle, Jan Polcher, David Fairbairn, and Graham P. Weedon
Hydrol. Earth Syst. Sci., 22, 2091–2115, https://doi.org/10.5194/hess-22-2091-2018, https://doi.org/10.5194/hess-22-2091-2018, 2018
Short summary
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
Carmelo Cammalleri, Jürgen V. Vogt, Bernard Bisselink, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 6329–6343, https://doi.org/10.5194/hess-21-6329-2017, https://doi.org/10.5194/hess-21-6329-2017, 2017
Short summary
Short summary
Drought can affect large regions of the world, implying the need for a global monitoring tool. For the JRC Global Drought Observatory (GDO,
http://edo.jrc.ec.europa.eu/gdo/), 3 soil moisture anomaly datasets have been compared, in order to evaluate their consistency. The analysis performed on five macro-regions (North America, Europe, India, southern Africa and Australia) suggests the need to combine these different data sources in order to obtain robust assessments over a variety of conditions.
Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet
Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, https://doi.org/10.5194/gmd-10-3889-2017, 2017
Short summary
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Hylke E. Beck, Albert I. J. M. van Dijk, Ad de Roo, Emanuel Dutra, Gabriel Fink, Rene Orth, and Jaap Schellekens
Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, https://doi.org/10.5194/hess-21-2881-2017, 2017
Short summary
Short summary
Runoff measurements for 966 catchments around the globe were used to assess the quality of the daily runoff estimates of 10 hydrological models run as part of tier-1 of the eartH2Observe project. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty.
Hylke E. Beck, Albert I. J. M. van Dijk, Vincenzo Levizzani, Jaap Schellekens, Diego G. Miralles, Brecht Martens, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, https://doi.org/10.5194/hess-21-589-2017, 2017
Short summary
Short summary
MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a new global terrestrial precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. The dataset is unique in that it takes advantage of a wide range of data sources, including gauge, satellite, and reanalysis data, to obtain the best possible precipitation estimates at global scale. The dataset outperforms existing gauge-adjusted precipitation datasets.
Anaïs Barella-Ortiz, Jan Polcher, Patricia de Rosnay, Maria Piles, and Emiliano Gelati
Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, https://doi.org/10.5194/hess-21-357-2017, 2017
Short summary
Short summary
L-band radiometry is considered to be one of the most suitable techniques for estimating surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM. This paper compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones. It shows that models and remote-sensed values agree well in temporal variability, but not in their spatial structures.
D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati
Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, https://doi.org/10.5194/hess-19-4811-2015, 2015
Short summary
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
V. Thiemig, B. Bisselink, F. Pappenberger, and J. Thielen
Hydrol. Earth Syst. Sci., 19, 3365–3385, https://doi.org/10.5194/hess-19-3365-2015, https://doi.org/10.5194/hess-19-3365-2015, 2015
G. Fontana, A. Toreti, A. Ceglar, and G. De Sanctis
Nat. Hazards Earth Syst. Sci., 15, 1631–1637, https://doi.org/10.5194/nhess-15-1631-2015, https://doi.org/10.5194/nhess-15-1631-2015, 2015
Short summary
Short summary
Extreme weather conditions can strongly affect arable crop growth and final yields. Early heat waves over Italy from 1995 to 2013 are identified and characterised, and their impact on durum wheat yields is investigated. Results confirm the impact of the 2003 heat waves and highlight a high percentage of concurrence of early heat waves and significant negative yield anomalies in 13 out of 39 durum wheat production areas. In the most important area of production this percentage exceeds 80%.
R. Žabkar, L. Honzak, G. Skok, R. Forkel, J. Rakovec, A. Ceglar, and N. Žagar
Geosci. Model Dev., 8, 2119–2137, https://doi.org/10.5194/gmd-8-2119-2015, https://doi.org/10.5194/gmd-8-2119-2015, 2015
M. Adamovic, I. Braud, F. Branger, and J. W. Kirchner
Hydrol. Earth Syst. Sci., 19, 2427–2449, https://doi.org/10.5194/hess-19-2427-2015, https://doi.org/10.5194/hess-19-2427-2015, 2015
Short summary
Short summary
This study explores how catchment heterogeneity and variability can be summarized in simplified models, representing the dominant hydrological processes. We apply simple dynamical system approach (Kirchner, 2009) in the Ardèche catchment (south-east France). The simple dynamical system hypothesis works especially well in wet conditions (peaks and recessions are well modelled) and for granite catchments, which are likely to be characterized by shallow subsurface flow.
I. Braud, P.-A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, G. Nord, J.-P. Vandervaere, S. Anquetin, M. Adamovic, J. Andrieu, C. Batiot, B. Boudevillain, P. Brunet, J. Carreau, A. Confoland, J.-F. Didon-Lescot, J.-M. Domergue, J. Douvinet, G. Dramais, R. Freydier, S. Gérard, J. Huza, E. Leblois, O. Le Bourgeois, R. Le Boursicaud, P. Marchand, P. Martin, L. Nottale, N. Patris, B. Renard, J.-L. Seidel, J.-D. Taupin, O. Vannier, B. Vincendon, and A. Wijbrans
Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, https://doi.org/10.5194/hess-18-3733-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
Cited articles
Abdelrhem, I. M., Raschid, K., and Ismail, A.: Integrated groundwater management for great man-made river project in Libya, Eur. J. Sci. Res., 22, 562–569, 2008. a
Al-Weshah, R. A.: Optimal Use of Irrigation Water in the Jordan Valley: A Case Study, Water Resour. Manage., 14, 327–338, https://doi.org/10.1023/a:1011152318711, 2000. a
Bartholomew-Biggs, M.: Nonlinear optimization with financial applications,
Springer US, https://doi.org/10.1007/b102601, 2006. a
Bernhard, J., Reynaud, A., de Roo, A., Karssenberg, D., and Jong, S. D.:
Household water use in Europe at regional scale: analysis of trends and
quantification of main drivers, in preparation, 2020a. a
Bernhard, J., Reynaud, A., de Roo, A., Karssenberg, D., and Jong, S. D.:
Mapping industrial water use and water productivity levels in Europe at high
sectoral and spatial detail, in preparation, 2020b. a
BGR: IHME1500 – International Hydrogeological Map of Europe ),
available at: https://www.bgr.bund.de/EN/Themen/Wasser/Projekte/laufend/Beratung/Ihme1500/ihme1500_projektbeschr_en.html,
last access: 1 January 2020. a
Bierkens, M. F. P., Reinhard, S., de Bruijn, J. A., Veninga, W., and Wada, Y.: The Shadow Price of Irrigation Water in Major Groundwater-Depleting
Countries, Water Resour. Res., 55, 4266–4287, https://doi.org/10.1029/2018WR023086, 2019. a, b
Bisselink, B., de Roo, A., Bernhard, J., and Gelati, E.: Future projections
of water scarcity in the Danube river basin due to land use, water demand and
climate change, J. Environ. Geogr., 11, 25–36, https://doi.org/10.2478/jengeo-2018-0010, 2018a. a
Bisselink, B., Bernhard, J., Gelati, E., Adamovic, M., Guenther, S.,
Mentaschi, L., and De Roo, A., Impact of a changing climate, land use, and water usage on Europe's water resources, EUR 29130 EN, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/847068, 2018b. a, b
Blank, J. and Deb, K.: pymoo – Multi-objective Optimization in Python:
Genetic Algorithm, available at:
https://pymoo.org/algorithms/genetic_algorithm.html, last access:
1 January 2020. a
Bouraoui, F. and Aloe, A.: European Agrochemicals Geospatial Loss Estimator:
Model Development and Applications, Office for Official Publications of the
European Commission, Luxemburg, available at:
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC36611/6611 - EUR_22690_EAGLE_web.pdf (last access: 1 January 2020), 2007. a
Brouwer, C., Prins, K., and Heibloem, M.: Irrigation water management: irrigation scheduling, FAO, Rome, Italy, available at: http://www.fao.org/tempref/agl/AGLW/fwm/Manual4.pdf (last access: 1 January 2020), 1989. a
Burek, P., van der Knijff, J., and de Roo, A.: LISFLOOD Distributed Water
Balance and Flood Simulation Model – Revised User Manual, Joint Research
Centre, European Commission, Ispra (VA), Italy, https://doi.org/10.2788/24719, 2013. a
Chartres, C. and Sood, A.: The water for food paradox, Aquat. Proced., 1,
3–19, 2013. a
Chen, L.: Real coded genetic algorithm optimization of long term reservoir
operation, J. Am. Water Resour. Assoc., 39, 1157–1165, https://doi.org/10.1111/j.1752-1688.2003.tb03699.x, 2003. a
Chevallier, F., Ciais, P., Conway, T. J., Aalto, T., Anderson, B. E., Bousquet, P., Brunke, E. G., Ciattaglia, L., Esaki, Y., Fröhlich, M., Gomez, A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. B., Langenfelds, R. L., Leuenberger, M., Machida, T., Maignan, F., Matsueda, H., Morguí, J. A., Mukai, H., Nakazawa, T., Peylin, P., Ramonet, M., Rivier, L., Sawa, Y.,
Schmidt, M., Steele, L. P., Vay, S. A., Vermeulen, A. T., Wofsy, S., and
Worthy, D.: CO2 surface fluxes at grid point scale estimated from a
global 21 year reanalysis of atmospheric measurements, J. Geophys. Res.-Atmos., 115, D21307, https://doi.org/10.1029/2010JD013887, 2010. a
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F.,
Noblet, N. D., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch,
B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci,
G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S.,
Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and
Valentini, R.: Europe-wide reduction in primary productivity caused by the
heat and drought in 2003, Nature, 437, 529–533, https://doi.org/10.1038/nature03972,
2005. a
Copernicus: Flux inversion reanalysis of global carbon dioxide – Fluxes and
atmospheric concentrations, available at:
https://atmosphere.copernicus.eu/catalogue#/product/urn:x-wmo:md:int.ecmwf::copernicus:cams:prod:rean:co2:pid286,
last access: 1 January 2020. a
Custodio, E., Llamas, M., Hernández-Mora, N., Martínez Cortina, L.,
and Martínez-Santos, P.: Issues related to intensive groundwater use, in:
Water Policy in Spain, chap. 14, edited by: Garrido, A. and Llamas, M.,
CRC Press, Boca Raton, FL, USA, 143–162, 2009. a
Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J.,
García-Aróstegui, J. L., Manzano, M., Rodríguez-Hernández, L., Sahuquillo, A., and del Villar, A.: Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects, Sci. Total Environ., 559, 302–316, https://doi.org/10.1016/j.scitotenv.2016.02.107, 2016. a
Custodio, E., Albiac, J., Cermerón, M., Hernández, M., Llamas, M. R., and Sahuquillo, A.: Groundwater mining: benefits, problems and consequences in Spain, Sustain. Water Resour. Manage., 3, 213–226,
https://doi.org/10.1007/s40899-017-0099-2, 2017a. a
Custodio, E., Sahuquillo, A., and Albiac, J.: Sustainability of intensive
groundwater development: experience in Spain, Sustain. Water Resour. Manage., 5, 11–26, https://doi.org/10.1007/s40899-017-0105-8, 2017b. a
Daccache, A., Ciurana, J. S., Diaz, J. A. R., and Knox, J. W.: Water and energy footprint of irrigated agriculture in the Mediterranean region, Environ. Res. Lett., 9, 124014, https://doi.org/10.1088/1748-9326/9/12/124014, 2014. a
Dalin, C., Taniguchi, M., and Green, T. R.: Unsustainable groundwater use for
global food production and related international trade, Global Sustain., 2, e12, https://doi.org/10.1017/sus.2019.7, 2019. a, b, c
Davis, K. F., Rulli, M. C., Seveso, A., and D'Odorico, P.: Increased food
production and reduced water use through optimized crop distribution, Nat.
Geosci., 10, 919–924, https://doi.org/10.1038/s41561-017-0004-5, 2017. a
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H. R., Sutanudjaja, E. H., and Bierkens, M. F. P.: Environmental flow limits to global groundwater pumping, Nature, 574, 90–94, https://doi.org/10.1038/s41586-019-1594-4, 2019. a
de Roo, A. P. J., Wesseling, C. G., and Van Deursen, W. P. A.: Physically
based river basin modelling within a GIS: the LISFLOOD model, Hydrol. Process., 14, 1981–1992,
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F, 2000. a
Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water Resour. Res., 38, 8-1–8-10, https://doi.org/10.1029/2001WR000355, 2002. a
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow
alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009. a
Döll, P., Hoffmann-Dobrev, H., Portmann, F., Siebert, S., Eicker, A.,
Rodell, M., Strassberg, G., and Scanlon, B.: Impact of water withdrawals from
groundwater and surface water on continental water storage variations, J. Geodynam., 59–60, 143–156, https://doi.org/10.1016/j.jog.2011.05.001, 2012. a, b
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and Eicker,
A.: Global-scale assessment of groundwater depletion and related groundwater
abstractions: Combining hydrological modeling with information from well
observations and GRACE satellites, Water Resour. Res., 50, 5698–5720,
https://doi.org/10.1002/2014WR015595, 2014. a, b
Döll, P., Douville, H., Güntner, A., Schmied, H. M., and Wada, Y.:
Modelling Freshwater Resources at the Global Scale: Challenges and Prospects,
in: Remote Sensing and Water Resources, edited by: Cazenave, A., Champollion,
N., Benveniste, J., and Chen, J., Springer International Publishing, New York, NY, USA, 5–31, https://doi.org/10.1007/978-3-319-32449-4_2, 2016. a, b
Duscher, K., Günther, A., Richts, A., Clos, P., Philipp, U., and Struckmeier, W.: The GIS layers of the “International Hydrogeological Map of Europe ” in a vector format, Hydrogeol. J., 23, 1867–1875,
https://doi.org/10.1007/s10040-015-1296-4, 2015. a
EASAC: Groundwater in the Southern Member States of the European Union: an
assessment of current knowledge and future prospects – Country report for
Greece, EASAC, available at: https://easac.eu/fileadmin/PDF_s/reports_statements/Greece_Groundwater_country_report.pdf
(last access: 1 January 2020), 2010. a
EEA: Corine Land Cover 2006 raster data, avaialable at:
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2006 (last
access: 1 January 2020), 2006. a
EEA: European Pollutant Release and Transfer Register, available at:
https://prtr.eea.europa.eu/ (last access: 1 January 2020), 2020a. a
EEA: WISE WFD reference spatial data sets, available at:
https://www.eea.europa.eu/data-and-maps/data/wise-wfd-spatial-2 (last access: 1 January 2020), 2020b. a
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N.,
Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y.,
Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials
of future irrigation water availability on agricultural production under
climate change, P. Natl. Acad. Sci. USA, 111, 3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014. a
Eurostat: Crop production in national humidity, available at:
https://ec.europa.eu/eurostat/web/products-datasets/-/apro_cpnh1 (last access: 1 January 2020), 2020a. a
Eurostat: Crop production in EU standard humidity, available at:
https://ec.europa.eu/eurostat/web/products-datasets/-/apro_cpsh1 (last access: 1 January 2020), 2020b. a
Eurostat: Water abstraction by river basin district (RBD), available at:
https://ec.europa.eu/eurostat/web/products-datasets/-/env_watabs_rb,
(last access: 1 January 2020), 2020f. a
Eurostat: NUTS – Nomenclature of territorial units for statistics, available at: https://ec.europa.eu/eurostat/web/nuts/background (last access:
1 January 2020), 2020h. a
Fader, M., Shi, S., von Bloh, W., Bondeau, A., and Cramer, W.: Mediterranean
irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements, Hydrol. Earth Syst. Sci., 20, 953–973, https://doi.org/10.5194/hess-20-953-2016, 2016. a
Falkenmark, M.: Growing water scarcity in agriculture: future challenge to
global water security, Philos. T. Roy. Soc. Lond. A, 371, 20120410, https://doi.org/10.1098/rsta.2012.0410, 2013. a
Famiglietti, J. S.: The global groundwater crisis, Nat. Clim. Change, 4,
945–948, https://doi.org/10.1038/nclimate2425, 2014. a
FAO and IIASA: Global Agro-Ecological Zones, available at:
http://www.fao.org/nr/gaez/en/, last access: 1 January 2020. a
Feyen, L.: Calibration of the LISFLOOD model for Europe: current status and way forward, European Commission EUR22125 EN, available at:
http://publications.jrc.ec.europa.eu/repository/handle/JRC32044 (last access: 1 January 2020), 2005. a
Fischer, G., Nachtergaele, F. O., Prieler, S., Teixeira, E., Tóth, G., van Velthuizen, H., Verelst, L., and Wiberg, D.: Global Agro-Ecological Zones (GAEZ v3. 0) – model documentation, IIASA, Laxenburg, Austria, and FAO, Rome, Italy, available at: http://pure.iiasa.ac.at/13290 (last access: 1 January 2020), 2012. a, b
Foster, S. and Custodio, E.: Groundwater Resources and Intensive Agriculture in Europe – Can Regulatory Agencies Cope with the Threat to Sustainability?,
Water Resour. Manage., 33, 2139–2151, https://doi.org/10.1007/s11269-019-02235-6, 2019. a
Fuentes, A.: Policies Towards a Sustainable Use of Water in Spain, Tech. rep., OECD – Organisation for Economic Co-Operation and Development,
Paris, France, https://doi.org/10.1787/5kgj3l0ggczt-en, 2011. a, b
García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M.,
Lasanta-Martínez, T., and Beguería, S.: Mediterranean water resources in a global change scenario, Earth-Sci. Rev., 105, 121–139,
https://doi.org/10.1016/j.earscirev.2011.01.006, 2011. a
Garduño, H. and Foster, S.: Sustainable Groundwater Irrigation approaches
to reconciling demand with resources, Tech. Rep., GW MATE strategic overview
series no. 4, World Bank, Washington, D.C., USA, available at:
http://documents.worldbank.org/curated/en/603961468331259 (last access: 1 January 2020), 2010. a
Garrido, A., Martínez-Santos, P., and Llamas, M. R.: Groundwater irrigation and its implications for water policy in semiarid countries: the
Spanish experience, Hydrogeol. J., 14, 340, https://doi.org/10.1007/s10040-005-0006-z, 2006. a
Gelati, E., Madsen, H., and Rosbjerg, D.: Stochastic reservoir optimization
using El Niño information: case study of Daule Peripa, Ecuador, Hydrol.
Res., 42, 413–431, https://doi.org/10.2166/nh.2011.009, 2011. a
Gelati, E., Madsen, H., and Rosbjerg, D.: Reservoir operation using El Niño forecasts – case study of Daule Peripa and Baba, Ecuador, Hydrolog. Sci. J., 59, 1559–1581, https://doi.org/10.1080/02626667.2013.831978, 2014. a
Giordano, M.: Global Groundwater? Issues and Solutions, Annu. Rev. Environ. Resour., 34, 153–178, https://doi.org/10.1146/annurev.environ.030308.100251, 2009. a, b
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006gl025734, 2006. a
Gleeson, T. and Richter, B.: How much groundwater can we pump and protect
environmental flows through time? Presumptive standards for conjunctive
management of aquifers and rivers, River Res. Appl., 34, 83–92, https://doi.org/10.1002/rra.3185, 2018. a, b
Gleeson, T., Alley, W. M., Allen, D. M., Sophocleous, M. A., Zhou, Y.,
Taniguchi, M., and VanderSteen, J.: Towards Sustainable Groundwater Use:
Setting Long-Term Goals, Backcasting, and Managing Adaptively, Groundwater, 50, 19–26, https://doi.org/10.1111/j.1745-6584.2011.00825.x, 2012. a
Gorelick, S. M. and Zheng, C.: Global change and the groundwater management
challenge, Water Resour. Res., 51, 3031–3051, https://doi.org/10.1002/2014WR016825, 2015. a
Greve, P., Gudmundsson, L., and Seneviratne, S. I.: Regional scaling of annual mean precipitation and water availability with global temperature change, Earth Syst. Dynam., 9, 227–240, https://doi.org/10.5194/esd-9-227-2018, 2018. a
Grogan, D. S., Wisser, D., Prusevich, A., Lammers, R. B., and Frolking, S.: The use and re-use of unsustainable groundwater for irrigation: a global budget, Environ. Res. Lett., 12, 034017, https://doi.org/10.1088/1748-9326/aa5fb2, 2017. a
Gruere, G.: Policies to Manage Agricultural Groundwater Use – Portugal, OECD, available at: https://www.oecd.org/agriculture/topics/water-and-agriculture/documents/groundwater-country-note-PRT-2015 final.pdf (last access: 1 January 2020), 2015. a
Guiot, J. and Cramer, W.: Climate change: The 2015 Paris Agreement thresholds
and Mediterranean basin ecosystems, Science, 354, 465–468,
https://doi.org/10.1126/science.aah5015, 2016. a
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic impacts on
continental surface water fluxes, Geophys. Res. Lett., 33, L08406, https://doi.org/10.1029/2006GL026047, 2006. a
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D.: Global water resources affected by human interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014. a
Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V.,
Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., and Kim, S.: Long-term
global water projections using six socioeconomic scenarios in an integrated
assessment modeling framework, Technol. Forecast. Social Change, 81, 205–226, https://doi.org/10.1016/j.techfore.2013.05.006, 2014. a
Hernández-Mora, N., Martínez Cortina, L., Llamas Madurga, M. R.,
and Custodio Gimena, E.: Groundwater issues in southern EU MEMBER states –
Spain country report, EASAC, available at:
https://easac.eu/fileadmin/PDF_s/reports_statements/Spain_Groundwater_country_report.pdf (last access: 1 January 2020), 2010. a
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y.,
Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.:
Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth
Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018. a
Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., and Mortensen,
D. A.: Agriculture in 2050: recalibrating targets for sustainable
intensification, BioScience, 67, 386–391, https://doi.org/10.1093/biosci/bix010, 2017. a
Hussain, M. and Mahmud, I.: pyMannKendall: a Python package for non parametric Mann Kendall family of trend tests, J. Open Sour. Softw., 4, 1556,
https://doi.org/10.21105/joss.01556, 2019. a
IAASTD: Agriculture at the crossroads. International assessment of agricultural knowledge, science and technology, Island Press, Washington, D.C., USA, 2009. a
ICID: Sprinkler and Micro Irrigated area, International Commission on
Irrigation and Drainage (ICID), New Delhi, India, available at:
http://www.icid.org/sprinklerandmircro.pdf (last access: 1 January 2020), 2012. a
IFPRI and IIASA: Global spatially-disaggregated crop production statistics
data for 2005 version 3.2, available at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DHXBJX, last access: 1 January 2020. a
INSPIRE: D2.8.I.1 Data Specification on Coordinate Reference Systems –
Technical Guidelines, available at:
https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_RS_v3.2.pdf
(last access: 1 January 2020), 2014. a
Jägermeyr, J., Gerten, D., Schaphoff, J. H. S., Kummu, M., and Lucht, W.:
Water savings potentials of irrigation systems: global simulation of
processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091,
https://doi.org/10.5194/hess-19-3073-2015, 2015. a, b
Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and
Rockström, J.: Integrated crop water management might sustainably halve
the global food gap, Environ. Res. Lett., 11, 025002,
https://doi.org/10.1088/1748-9326/11/2/025002, 2016. a
Joodaki, G., Wahr, J., and Swenson, S.: Estimating the human contribution to
groundwater depletion in the Middle East, from GRACE data, land surface
models, and well observations, Water Resour. Res., 50, 2679–2692,
https://doi.org/10.1002/2013WR014633, 2014. a
Kahil, M. T., Dinar, A., and Albiac, J.: Modeling water scarcity and droughts
for policy adaptation to climate change in arid and semiarid regions, J. Hydrol., 522, 95–109, https://doi.org/10.1016/j.jhydrol.2014.12.042, 2015. a
Kendall, M. G.: Rank Correlation Methods, 4th Edn., Charles Griffin, London, UK, 1975. a
Keramidas, K., Kitous, A., Després, J., and Schmitz, A.: POLES-JRC model
documentation, Publications Office of the European Union, Seville, Spain,
https://doi.org/10.2760/225347, 2017. a
Konikow, L. F. and Kendy, E.: Groundwater depletion: A global problem, Hydrogeol. J., 13, 317–320, https://doi.org/10.1007/s10040-004-0411-8, 2005. a, b
Lehner, B. and Döll, P.: Development and Validation of a Global Database of Lakes, Reservoirs and Wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004. a
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B.,
Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C.,
Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution
mapping of the world's reservoirs and dams for sustainable river-flow
management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011a. a
Lehner, B., Reidy Liermann, C., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Doll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C.,
Robertson, J., Rodel, R., Sindorf, N., and Wisser, D.: Global Reservoir and
Dam Database, Version 1 (GRanDv1): Reservoirs, Revision 01, NASA, Palisades, NY, USA, https://doi.org/10.7927/h4hh6h08, 2011b. a
Lehner, F., Coats, S., Stocker, T. F., Pendergrass, A. G., Sanderson, B. M.,
Raible, C. C., and Smerdon, J. E.: Projected drought risk in 1.5 ∘C
and 2 ∘C warmer climates, Geophys. Res. Lett., 44, 7419–7428, https://doi.org/10.1002/2017GL074117, 2017. a
Levine, J. B. and Salvucci, G. D.: Equilibrium analysis of groundwater–vadose zone interactions and the resulting spatial distribution of hydrologic fluxes across a Canadian Prairie, Water Resour. Res., 35, 1369–1383, https://doi.org/10.1029/1999WR900018, 1999. a
Llamas, M. R., Custodio, E., de la Hera, A., and Fornés, J. M.:
Groundwater in Spain: increasing role, evolution, present and future, Environ. Earth Sci., 73, 2567–2578, https://doi.org/10.1007/s12665-014-4004-0, 2015. a
Llamas, R. and Custodio, E. (Eds.): Environmental implications of intensive
groundwater use withspecial regard to streams and wetlands, Balkema, Lisse,
the Netherlands, 2002. a
Llamas, R. and Garrido, A.: Lessons from intensive groundwater use in Spain:
Economic and social benefits and conflicts, in: The Agricultural Groundwater
Revolution: Opportunities and Threats to Development, edited by Giordano and
Villholth, CAB International, Wallingford, UK, 266–295, 2007. a
Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X., Hong, Y., Scanlon, B. R., and
Longuevergne, L.: Global analysis of spatiotemporal variability in merged
total water storage changes using multiple GRACE products and global hydrological models, Remote Sens. Environ., 192, 198–216,
https://doi.org/10.1016/j.rse.2017.02.011, 2017. a
Malek, Ž. and Verburg, P. H.: Adaptation of land management in the
Mediterranean under scenarios of irrigation water use and availability, Mitig. Adapt. Strat. Global Change, 23, 821–837, https://doi.org/10.1007/s11027-017-9761-0, 2017. a
Mann, H.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945. a
MITECO: Libro blanco del agua en España – Síntesis [White book of
water in Spain – Summary], Spanish Ministry for Ecological Transition and
Demographic Challenge, Madrid, Spain, available at:
https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/sintesis_tcm30-77435.pdf (last access: 1 January 2020), 2000. a
Moench, M., Burke, J. J., and Moench, Y.: Rethinking the approach to
groundwater and food security, Tech. Rep., Water Reports 24, FAO, Rome, Italy, available at: http://www.fao.org/3/a-y4495e.pdf (last access: 1 January 2020), 2003. a
Molden, D., Frenken, K., Barker, R., DeFraiture, C., Mati, B., Svendsen, M.,
Sadoff, C., Finlayson, M., Atapattu, S., Giordano, M., Inocencio, A.,
Lannerstad, M., Manning, N., Molle, F., Smedema, B., and Vallee., D.: Trends
in water and agricultural development, in: Water for food, water for life: a
comprehensive assessment of water management in agriculture, chap. 2, edited by: Molden, D., Earthscan, London, UK & International Water Management Institute, Colombo, Sri Lanka, 57–89, 2007. a, b
Molinero, J., Custodio, E., Sahuquillo, A., and Llamas, M. R.: Groundwater in Spain: Overview and management practices, Tech. rep., Real Academia de Ciencias, Madrid, Spain, available at: http://www.rac.es/ficheros/doc/00587.pdf (last access: 1 January 2020), 2008. a
Mubareka, S., Maes, J., Lavalle, C., and de Roo, A.: Estimation of water
requirements by livestock in Europe, Ecosyst. Serv., 4, 139–145,
https://doi.org/10.1016/j.ecoser.2013.03.001, 2013. a
Ngo, L. L., Madsen, H., and Rosbjerg, D.: Simulation and optimisation modelling approach for operation of the Hoa Binh reservoir, Vietnam, J. Hydrol., 336, 269–281, https://doi.org/10.1016/j.jhydrol.2007.01.003, 2007. a
Ntegeka, V. N., Salamon, P., Gomes, G., Sint, H., Lorini, V., Thielen Del Pozo, J., and Zambrano, H.: EFAS–Meteo: A European daily high–resolution gridded meteorological data set for 1990–2011, Joint Research Centre, European Commission, Ispra (VA), Italy, https://doi.org/10.2788/51262, 2013. a
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat, P.: Accounting for environmental flow requirements in global water assessments, Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, 2014. a
Planton, S., Lionello, P., Artale, V., Aznar, R., Carillo, A., Colin, J.,
Congedi, L., Dubois, C., Elizalde Arellano, A., Gualdi, S., Hertig, E.,
Jorda Sanchez, G., Li, L., Jucundus, J., Piani, C., Ruti, P., Sanchez-Gomez,
E., Sannino, G., Sevault, F., and Somot, S.: The climate of the
Mediterranean region in future climate projections, in: The Climate of the
Mediterranean Region, chap. 8, edited by: Lionello, P., Elsevier, Amsterdam, the Netherlands, https://doi.org/10.1016/C2011-0-06210-5, 2012. a
Pokhrel, Y. N., Hanasaki, N., Yeh, P. J.-F., Yamada, T. J., Kanae, S., and Oki, T.: Model estimates of sea-level change due to anthropogenic impacts on
terrestrial water storage, Nat. Geosci., 5, 389–392, https://doi.org/10.1038/ngeo1476, 2012. a
Pokhrel, Y. N., Koirala, S., Yeh, P. J.-F., Hanasaki, N., Longuevergne, L.,
Kanae, S., and Oki, T.: Incorporation of groundwater pumping in a global Land
Surface Model with the representation of human impacts, Water Resour. Res., 51, 78–96, https://doi.org/10.1002/2014WR015602, 2015. a
Ribeiro, L. and Veiga da Cunha, L.: Portuguese groundwater report – EASAC WG
on the role of groundwater in the water resources policy of southern EU member states, EASAC, available at:
https://easac.eu/fileadmin/PDF_s/reports_statements/Portugal_Groundwater_country_report.pdf
(last access: 1 January 2020), 2010. a
Rockström, J. and Karlberg, L.: The Quadruple Squeeze: Defining the safe
operating space for freshwater use to achieve a triply green revolution in
the Anthropocene, Ambio, 39, 257–265, https://doi.org/10.1007/s13280-010-0033-4, 2010. a
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, S. F., Lambin, E., Lenton, M. T., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, A. C., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, K. P., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, W. R., Fabry, J. V., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J.: Planetary boundaries: exploring the safe operating space for humanity, Ecol. Soc., 14, 32, 2009. a
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., and Lo, M.-H.: Emerging trends in global freshwater
availability, Nature, 557, 651–659, https://doi.org/10.1038/s41586-018-0123-1, 2018. a, b
Rohwer, J., Gerten, D., and Lucht, W.: Development of functional irrigation
types for improved global crop modelling, PIK report No. 104, PIK – Potsdam
Institute for Climate Impact Research, Potsdam, Germany, available at:
https://www.pik-potsdam.de/research/publications/pikreports/.files/pr104.pdf
(last access: 1 January 2020), 2007. a
Rosegrant, M. W., Ringler, C., and Zhu, T.: Water for Agriculture: Maintaining Food Security under Growing Scarcity, Annu. Rev. Environ. Resour., 34, 205–222, https://doi.org/10.1146/annurev.environ.030308.090351, 2009. a
Sacks, B.: Crop Calendar Dataset, available at:
https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php,
last access: 1 January 2020. a
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting
dates: an analysis of global patterns, Global Ecol. Biogeogr., 19, 607–620, https://doi.org/10.1111/j.1466-8238.2010.00551.x, 2010. a
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018. a
Sauer, T., Havlík, P., Schneider, U. A., Schmid, E., Kindermann, G., and
Obersteiner, M.: Agriculture and resource availability in a changing world:
The role of irrigation, Water Resour. Res., 46, W06503, https://doi.org/10.1029/2009WR007729, 2010. a
Scanlon, B. R., Jolly, I., Sophocleous, M., and Zhang, L.: Global impacts of
conversions from natural to agricultural ecosystems on water resources:
Quantity versus quality, Water Resour. Res., 43, W03437, https://doi.org/10.1029/2006WR005486, 2007. a
Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D., and Uhlman, K.: Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona, Environ. Res. Lett., 11, 035013,
https://doi.org/10.1088/1748-9326/11/3/035013, 2016. a
Seckler, D., Barker, R., and Amarasinghe, U.: Water Scarcity in the
Twenty-first Century, Int. J. Water Resour. Dev., 15, 29–42, https://doi.org/10.1080/07900629948916, 1999. a
Sharpley, A. N. and Williams, J. R.: EPIC–Erosion/Productivity Impact
Calculator: 1. Model Documentation, US Department of Agriculture Technical
Bulletin, available at:
http://epicapex.tamu.edu/files/2015/05/EpicModelDocumentation.pdf
(last access: 1 January 2020), 1990. a
Shiklomanov, I. A.: Appraisal and Assessment of World Water Resources, Water
Int., 25, 11–32, https://doi.org/10.1080/02508060008686794, 2000. a
Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated land from 1900 to 2005, Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, 2015. a
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y.,
Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L.,
Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, 322–329,
https://doi.org/10.1038/nclimate1744, 2012. a, b
Texas A&M AgriLife Research: EPIC version 0810 source code, available at:
http://epicapex.tamu.edu/model-executables/epic0810/, last access: 1 January 2020. a
Tharme, R. E.: A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers, River Res. Appl., 19, 397–441, https://doi.org/10.1002/rra.736, 2003. a
Thiemig, V., Salamon, P., Gomes, G. N., Skøien, J. O., Ziese, M.,
Rauthe-Schöch, A., Rehfeldt, K., Pichon, D., and Schweim, C.: EMO-5:
Copernicus pan-European high-resolution meteorological data set for large-scale hydrological modelling, in: EGU General Assembly 2020, Online,
4–8 May 2020, EGU2020-21551, https://doi.org/10.5194/egusphere-egu2020-21551, 2020. a
Tian, Y., Xiong, J., He, X., Pi, X., Jiang, S., Han, F., and Zheng, Y.: Joint
Operation of Surface Water and Groundwater Reservoirs to Address Water
Conflicts in Arid Regions: An Integrated Modeling Study, Water, 10, 1105,
https://doi.org/10.3390/w10081105, 2018. a, b
UN: Protection of the quality and supply of freshwater resources: application
of integrated approaches to the development, management and use of water
resources, in: chap. 18, Report of the United Nations Conference on Environment and Development, 3–14 June 1992, Rio de Janeiro, 196–225, United Nations, New York, USA, available at:
https://sustainabledevelopment.un.org/content/documents/Agenda21.pdf (last access: 1 January 2020), 1993. a
Vandecasteele, I., Bianchi, A., Batista e Silva, F., Lavalle, C., and
Batelaan, O.: Mapping current and future European public water withdrawals
and consumption, Hydrol. Earth Syst. Sci., 18, 407–416,
https://doi.org/10.5194/hess-18-407-2014, 2014. a
van der Knijff, J. M., Younis, J., and de Roo, A. P. J.: LISFLOOD: a
GIS-based distributed model for river basin scale water balance and flood
simulation, Int. J. Geogr. Inform. Sci., 24, 189–212, https://doi.org/10.1080/13658810802549154, 2010. a
van der Velde, M., Tubiello, F. N., Vrieling, A., and Bouraoui, F.: Impacts of extreme weather on wheat and maize in France: evaluating regional crop
simulations against observed data, Climatic Change, 113, 751–765,
https://doi.org/10.1007/s10584-011-0368-2, 2012. a
Vergnes, J.-P. and Decharme, B.: A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges, Hydrol. Earth Syst.
Sci., 16, 3889–3908, https://doi.org/10.5194/hess-16-3889-2012, 2012. a
Vergnes, J.-P., Decharme, B., and Habets, F.: Introduction of groundwater
capillary rises using subgrid spatial variability of topography into the ISBA
land surface model, J. Geophys. Res.-Atmos., 119, 11065–11086, https://doi.org/10.1002/2014JD021573, 2014. a
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak,
S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571, 2010. a, b
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable
groundwater sustaining irrigation: A global assessment, Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562, 2012. a, b
Werner, A. D., Zhang, Q., Xue, L., Smerdon, B. D., Li, X., Zhu, X., Yu, L., and Li, L.: An Initial Inventory and Indexation of Groundwater Mega-Depletion
Cases, Water Resour. Manage., 27, 507–533, https://doi.org/10.1007/s11269-012-0199-6, 2012. a, b
Williams, J. R.: The EPIC Model, in: Computer Models of Watershed Hydrology,
chap. 25, edited by Singh, V. P., Water Resources Publications, Highlands Ranch, CO, USA, 909–1000,1995. a
Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The EPIC Crop Growth Model, T. ASAE, 32, 0497–0511, https://doi.org/10.13031/2013.31032, 1989. a
Wriedt, G., Van Der Velde, M., Aloe, A., and Bouraoui, F.: A European
irrigation map for spatially distributed agricultural modelling, Agr. Water Manage., 96, 771–789, https://doi.org/10.1016/j.agwat.2008.10.012, 2009a. a
Wriedt, G., Van Der Velde, M., Aloe, A., and Bouraoui, F.: Estimating irrigation water requirements in Europe, J. Hydrol., 373, 527–544,
https://doi.org/10.1016/j.jhydrol.2009.05.018, 2009b. a
Wurbs, R. A.: Reservoir-system simulation and optimization models, J. Water Resour. Plan. Manage., 119, 455–472, https://doi.org/10.1061/(ASCE)0733-9496(1993)119:4(455), 1993. a
WWF: Global Lakes and Wetlands Database, available at:
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database,
last access: 1 January 2020.
a
You, L., Wood, S., Wood-Sichra, U., and Wu, W.: Generating global crop
distribution maps: From census to grid, Agricult. Syst., 127, 53–60,
https://doi.org/10.1016/j.agsy.2014.01.002, 2014.
a
Zajac, Z., Zambrano-Bigiarini, M., Salamon, P., Burek, P., Gentile, A., and
Bianchi, A.: Calibration of the LISFLOOD hydrological model for Europe –
Calibration Round 2013, Joint Research Centre, European Commission, Ispra (VA), Italy, 2013. a
Short summary
In this modelling study, we conclude that groundwater is used unsustainably for irrigation in several areas of the
Euro-Mediterranean region. In the southern Iberian Peninsula, we estimate the potential effects of reducing irrigation groundwater abstractions to sustainable amounts to prevent long-term decline of groundwater storage. These restrictions may cause crop production losses but halt groundwater depletion and increase river flow during dry periods which is beneficial for ecosystems.
In this modelling study, we conclude that groundwater is used unsustainably for irrigation in...