Articles | Volume 17
https://doi.org/10.5194/asr-17-23-2020
https://doi.org/10.5194/asr-17-23-2020
16 Apr 2020
 | 16 Apr 2020

Bias-adjusted seasonal forecasts of soil moisture for forestry applications in Finland

Otto Hyvärinen, Ari Venäläinen, and Andrea Vajda

Related authors

The usefulness of Extended-Range Probabilistic Forecasts for Heat wave forecasts in Europe
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-75,https://doi.org/10.5194/nhess-2024-75, 2024
Preprint under review for NHESS
Short summary
Winter Subseasonal Wind Speed Forecasts for Finland from ECMWF
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021,https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Development of seasonal climate outlooks for agriculture in Finland
Andrea Vajda and Otto Hyvärinen
Adv. Sci. Res., 17, 269–277, https://doi.org/10.5194/asr-17-269-2020,https://doi.org/10.5194/asr-17-269-2020, 2020
Short summary
Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020,https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary
Long-range forecasts for the energy market – a case study
Otto Hyvärinen, Antti Mäkelä, Matti Kämäräinen, and Hilppa Gregow
Adv. Sci. Res., 14, 89–93, https://doi.org/10.5194/asr-14-89-2017,https://doi.org/10.5194/asr-14-89-2017, 2017
Short summary

Cited articles

Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, https://doi.org/10.1016/j.jhydrol.2011.02.020, 2011. a
Copernicus Climate Change Service: Climate Data Store, available at: https://cds.climate.copernicus.eu, last access: 14 April 2020. a
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter, 147, https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (last access: 10 January 2020), 2016. a
Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J., Fernández, J., Frías, M. D., Manzanas, R., San-Martín, D., Cimadevilla, E., Cofiño, A. S., and Gutiérrez, J. M.: The R-based climate4R open framework for reproducible climate data access and post-processing, Environ. Modell. Softw., 111, 42–54, https://doi.org/10.1016/j.envsoft.2018.09.009, 2018. a
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019. a
Download
Short summary
The monthly mean soil moisture forecasts for forestry are been developed in the Finnish Meteorological Institute in cooperation with Finnish end-users. Such forecasts help in timber harvesting planning, and forecasts could large economic value. Therefore the skillfulness of forecasts was measured. Throughout the year the first month was skillful, and after that it can be hard to say if the forecasts are better than the normal conditions. Winter forecasts are a bit better than summer forecasts.