Towards a reproducible snow load map – an example for Austria
Harald Schellander
CORRESPONDING AUTHOR
ZAMG – Zentralanstalt für Meteorologie und Geodynamik, Innsbruck, Austria
Michael Winkler
CORRESPONDING AUTHOR
ZAMG – Zentralanstalt für Meteorologie und Geodynamik, Innsbruck, Austria
Tobias Hell
Department of Mathematics, University of Innsbruck, Innsbruck, Austria
Related authors
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Short summary
A new method to calculate the mass of snow is provided. It is quite simple but gives surprisingly good results. The new approach only requires regular snow depth observations to simulate respective water mass that is stored in the snow. It is called
ΔSNOW model, its code is freely available, and it can be applied in various climates. The method is especially interesting for studies on extremes (e.g., snow loads or flooding) and climate (e.g., precipitation trends).
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Short summary
A new method to calculate the mass of snow is provided. It is quite simple but gives surprisingly good results. The new approach only requires regular snow depth observations to simulate respective water mass that is stored in the snow. It is called
ΔSNOW model, its code is freely available, and it can be applied in various climates. The method is especially interesting for studies on extremes (e.g., snow loads or flooding) and climate (e.g., precipitation trends).
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro summit are like sample spots of the climate in the tropical mid-troposphere. Measurements of air temperature, air humidity, and precipitation with automated weather stations show that the differences in these meteorological elements between two altitudes (~ 5600 and ~ 5900 m) vary significantly over the day and the seasons, in concert with airflow dynamics around the mountain. Knowledge of these variations will improve atmosphere and cryosphere models.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE
T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
a
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2006. a
Autonome Provinz Bozen Südtirol: Dekret des Landeshauptmanns vom 6. Mai 2002, Nr. 14, available at: http://lexbrowser.provinz.bz.it/doc/de/dpgp-2002-14/dekret_des_landeshauptmanns_vom_6_mai_2002_nr_14
(last access date: 28 July 2021), 2002. a
Blanchet, J. and Lehning, M.: Mapping snow depth return levels: smooth spatial modeling versus station interpolation, Hydrol. Earth Syst. Sci., 14, 2527–2544, https://doi.org/10.5194/hess-14-2527-2010, 2010. a, b
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in: Springer Series in Statistics, Springer-Verlag, London, https://doi.org/10.1007/978-1-4471-3675-0, 2001. a
Croce, P., Formichi, P., Landi, F., Mercogliano, P., Bucchignani, E., Dosio,
A., and Dimova, S.: The snow load in Europe and the climate change, Clim.
Risk Manage., 20, 138–154, https://doi.org/10.1016/j.crm.2018.03.001, 2018. a
Croce, P., Formichi, P., Landi, F., and Marsili, F.: Harmonized European ground snow load map: Analysis and comparison of national provisions, Cold
Reg. Sci. Technol., 168, 102875, https://doi.org/10.1016/j.coldregions.2019.102875, 2019. a
DeBock, D. J., Liel, A. B., Harris, J. R., Ellingwood, B. R., and Torrents, J. M.: Reliability-Based Design Snow Loads. I: Site-Specific Probability
Models for Ground Snow Loads, J. Struct. Eng., 143, 04017046, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001731, 2017. a
DIN: DIN EN 1991-1-3/NA:2019-04, Deutsches Institut für Normung e.V.,
Berlin, Germany, 2019. a
Etienne, C., Lehmann, A., Goyette, S., Lopez-Moreno, J.-I., and Beniston, M.:
Spatial Predictions of Extreme Wind Speeds over Switzerland Using Generalized
Additive Models, J. Appl. Meteorol. Clim., 49, 1956–1970, https://doi.org/10.1175/2010JAMC2206.1, 2010. a
Gaume, J., Eckert, N., Chambon, G., Naaim, M., and Bel, L.: Mapping extreme
snowfalls in the French Alps using max-stable processes, Water Resour. Res., 49, 1079–1098, https://doi.org/10.1002/wrcr.20083, 2013. a
Gstöhl, S.: Spatial modeling of extreme snow depth and snow water equivalent, MS thesis, University of Innsbruck, Innsbruck, 2017. a
Guyennon, N., Valt, M., Salerno, F., Petrangeli, A. B., and Romano, E.:
Estimating the snow water equivalent from snow depth measurements in the Italian Alps, Cold Reg. Sci. Technol., 167, 102859,
https://doi.org/10.1016/j.coldregions.2019.102859, 2019. a
Haan, L. D.: A Spectral Representation for Max-stable Processes, Ann. Probabil., 12, 1194–1204, https://doi.org/10.1214/aop/1176993148, 1984. a
Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, CRC Press,
London, 1990. a
Hong, H. P. and Ye, W.: Analysis of extreme ground snow loads for Canada
using snow depth records, Nat. Hazards, 73, 355–371, https://doi.org/10.1007/s11069-014-1073-z, 2014. a
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent
from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009. a
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical
SNOWPACK model for the Swiss Avalanche Warning Services. Part II: Snow Microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002. a
Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards, Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, 2020. a, b, c, d
Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics, Climatic Change, 111, 705–721, https://doi.org/10.1007/s10584-011-0159-9, 2012. a
Mo, H. M., Dai, L. Y., Fan, F., Che, T., and Hong, H. P.: Extreme snow hazard
and ground snow load for China, Nat. Hazards, 84, 2095–2120, https://doi.org/10.1007/s11069-016-2536-1, 2016. a
Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: Assessing Climate Change Impact on the Spatial Dependence of Extreme Snow Depth Maxima in the French Alps, Water Resour. Res., 54, 7820–7840, https://doi.org/10.1029/2018WR022763,
2018. a
Olefs, M., Schöner, W., Suklitsch, M., Wittmann, C., Niedermoser, B.,
Neururer, A., and Wurzer, A.: SNOWGRID – A New Operational Snow Cover Model in Austria, in: International snow science workshop proceedings 2013, Grenoble – Chamonix Mont Blanc, France, 38–45, available at:
https://arc.lib.montana.edu/snow-science/item/1785 (last access: 28 July 2021), 2013. a
Olefs, M., Girstmair, A., Hiebl, J., Koch, R., and Schöner, W.: An area-wide snow climatology for Austria since 1961 based on newly available daily precipitation and air temperature grids, in: Geophysical Research
Abstracts, vol. 19, EGU, Vienna, Austria, EGU2017–12249, 2017. a
ON: ÖNORM B 4013:1983 12 01, Österreichisches Normungsinstitut, Vienna, Austria, 1983. a
ON: ÖNORM B 1991-1-3:2006 04 01, Österreichisches Normungsinstitut,
Vienna, Austria, 2006. a
Perčec Tadić, M., Zaninović, K., and Sokol Jurković, R.:
Mapping of maximum snow load values for the 50-year return period for Croatia, Spat. Statist., 14, 53–69, https://doi.org/10.1016/j.spasta.2015.05.002, 2015. a
Saeb, A.: gnFit: Goodness of Fit Test for Continuous Distribution Functions,
r package version 0.2.0, available at: https://CRAN.R-project.org/package=gnFit (last access: 28 July 2021), 2018. a
Sanpaolesi, L., Currie, D., Sims, P., Sacré, C., Stiefel, U., Lozza, S.,
Eiselt, B., Peckham, R., Solomos, G., Holand, I., Sandvik, R., Gränzer, M., König, G., Sukhov, D., del Corso, R., and Formichi, P.: Scientific support activity in the field of structural stability of civil engeneering works – snow loads, Final Report I Contract no. 500269 dated 16 December 1996, Commission of the European communities GDIII – D3,
available at: http://www2.ing.unipi.it/dic/snowloads (last access: 28 July 2021), 1998. a, b
Sanpaolesi, L., Brettle, M., Currie, D., Dillon, P., Sims, P., Delpech, P.,
Dufresne, M., Sacré, C., Stiefel, U., Lozza, S., Eiselt, B., Peckham, R.,
Solomos, G., Holand, I., Leira, B., Sandvik, R., Gränzer, M., König, G., Sukhov, D., del Corso, R., and Formichi, P.: Scientific support activity in the field of structural stability of civil engeneering works – snow loads, Final Report II Contract no. 500990 dated 12 December 1997, Commission
of the European communities GDIII – D3, available at:
http://www2.ing.unipi.it/dic/snowloads (last access: 28 July 2021), 1999. a
Schellander, H. and Winkler, M.: niXmass – R package, available at:
https://CRAN.R-project.org/package=nixmass (last access: 28 July 2021), 2020. a
Sezer, A., Kan Kilinc, B., and Yazici, B.: Modeling extreme rainfalls using
generalized additive models for location, scale and shape parameters, Appl.
Ecol. Environ. Res., 14, 635–644, 2016. a
SIA: SIA 261:2020, Schweizerischer Ingenieur- und Architektenverein,
Zurich, Switzerland, 2020. a
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.:
Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes, J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010JHM1202.1, 2010. a
Unterstrasser, S. and Zängl, G.: Cooling by melting precipitation in Alpine valleys: An idealized numerical modelling study, Q. J. Roy. Meteorol. Soc., 132, 1489–1508, https://doi.org/10.1256/qj.05.158, 2006. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J. M.: The detailed snowpack scheme Crocus and its
implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Wastl, C. and Zängl, G.: Mountain–valley precipitation differences in the northern Alps: an exemplary high-resolution modeling study, Meteorol. Atmos. Phys., 108, 29–42, https://doi.org/10.1007/s00703-010-0083-y, 2010. a
Winkler, M., Kaufmann, H., Schöner, W., and Kuhn, M.: Schnee- und Eislast, in: ExtremA 2019, Aktueller Wissensstand zu Extremereignissen alpiner Naturgefahren in Österreich, Vienna University Press, Vienna, 2020. a
Winkler, M., Schellander, H., Hübner, U., Radlherr, A., and Drechsel, S.:
Schneelast.Reform, Endbericht, ZAMG – Zentralanstalt für Meteorologie
Geodynamik, Innsbruck, Austria, in preparation, 2021b. a
Wood, S. N.: Thin plate regression splines, J. Roy. Stat. Soc. Ser. B, 65, 95–114, https://doi.org/10.1111/1467-9868.00374, 2003. a
Short summary
Each building has to withstand a certain mass of snow. In the Alps, snow load standards are coarse, and inconsistencies at national borders are common. A new methodology to derive a snow load map for Austria is presented. It consists of modeling and spatially interpolating snow loads with modern extreme value statistics. The new approach is much more accurate than the currently used Austrian snow load map and provides a reproducible base for other countries.
Each building has to withstand a certain mass of snow. In the Alps, snow load standards are...