Articles | Volume 18
https://doi.org/10.5194/asr-18-145-2021
https://doi.org/10.5194/asr-18-145-2021
17 Sep 2021
 | 17 Sep 2021

Addressing up-scaling methodologies for convection-permitting EPSs using statistical and machine learning tools

Tiziana Comito, Colm Clancy, Conor Daly, and Alan Hally

Related authors

Teleconnections and Extreme Ocean States in the Northeast Atlantic Ocean
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019,https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary
Catalogue of extreme wave events in Ireland: revised and updated for 14 680 BP to 2017
Laura O'Brien, Emiliano Renzi, John M. Dudley, Colm Clancy, and Frédéric Dias
Nat. Hazards Earth Syst. Sci., 18, 729–758, https://doi.org/10.5194/nhess-18-729-2018,https://doi.org/10.5194/nhess-18-729-2018, 2018
Short summary
NAO and extreme ocean states in the Northeast Atlantic Ocean
Emily Gleeson, Sarah Gallagher, Colm Clancy, and Frédéric Dias
Adv. Sci. Res., 14, 23–33, https://doi.org/10.5194/asr-14-23-2017,https://doi.org/10.5194/asr-14-23-2017, 2017
Short summary
Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project
A. Hally, O. Caumont, L. Garrote, E. Richard, A. Weerts, F. Delogu, E. Fiori, N. Rebora, A. Parodi, A. Mihalović, M. Ivković, L. Dekić, W. van Verseveld, O. Nuissier, V. Ducrocq, D. D'Agostino, A. Galizia, E. Danovaro, and A. Clematis
Nat. Hazards Earth Syst. Sci., 15, 537–555, https://doi.org/10.5194/nhess-15-537-2015,https://doi.org/10.5194/nhess-15-537-2015, 2015
An ensemble study of HyMeX IOP6 and IOP7a: sensitivity to physical and initial and boundary condition uncertainties
A. Hally, E. Richard, and V. Ducrocq
Nat. Hazards Earth Syst. Sci., 14, 1071–1084, https://doi.org/10.5194/nhess-14-1071-2014,https://doi.org/10.5194/nhess-14-1071-2014, 2014

Cited articles

Allen, S. and Ferro, C. A.: Regime-dependent statistical post-processing of ensemble forecasts, Q. J. Roy. Meteor. Soc., 145, 3535–3552, https://doi.org/10.1002/qj.3638, 2019. a
Bari, D. and Ouagabi, A.: Machine-learning regression applied to diagnose horizontal visibility from mesoscale NWP model forecasts, SN Applied Sciences, 2, 1–13, https://doi.org/10.1007/s42452-020-2327-x, 2020. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. a
Ben Bouallègue, Z. and Theis, S. E.: Spatial techniques applied to precipitation ensemble forecasts: from verification results to probabilistic products, Meteorol. Appl., 21, 922–929, https://doi.org/10.1002/met.1435, 2014. a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., et al.: The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system, Mon. Weather Rev., 145, 1919–1935, 2017. a, b
Download
Short summary
Convection-permitting models allow for prediction of rainfall events with increasing levels of detail. However, this increased resolution can create problems such as the so-called double penalty problem when attempting to verify model forecast accuracy. This problem is amplified when trying to maximise the value of a convection-permitting ensemble prediction system (EPS). Post-processing of the EPS can help to overcome these issues. In this spirit, two new up-scaling algorithms based on Machine