Development of an empirical model for seasonal forecasting over the Mediterranean
Esteban Rodríguez-Guisado
CORRESPONDING AUTHOR
Departamento de Desarrollo y Aplicaciones, AEMET, Madrid, 28040, Spain
Antonio Ángel Serrano-de la Torre
Departamento de Desarrollo y Aplicaciones, AEMET, Madrid, 28040, Spain
Eroteida Sánchez-García
Delegación Territorial de AEMET en Cantabria, Santander, 39012,
Spain
Marta Domínguez-Alonso
Departamento de Desarrollo y Aplicaciones, AEMET, Madrid, 28040, Spain
Ernesto Rodríguez-Camino
Departamento de Desarrollo y Aplicaciones, AEMET, Madrid, 28040, Spain
Related authors
No articles found.
Jorge Tamayo, Ernesto Rodriguez-Camino, Alfonso Hernanz, and Sara Covaleda
Adv. Sci. Res., 19, 105–115, https://doi.org/10.5194/asr-19-105-2022, https://doi.org/10.5194/asr-19-105-2022, 2022
Short summary
Short summary
There has been developed for Central America downscaled climate change scenarios using the same methodology, that allows a joint analysis for the whole region. The high number of simulations improves the situation prior to the start of the action, where each country had a limited number of projections that differed in terms of background information, methodology and resolution. A web based viewer allows consultations and download on 37 different climatic variables and derived indices.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
María P. Amblar-Francés, Petra Ramos-Calzado, Jorge Sanchis-Lladó, Alfonso Hernanz-Lázaro, María C. Peral-García, Beatriz Navascués, Marta Dominguez-Alonso, María A. Pastor-Saavedra, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 17, 191–208, https://doi.org/10.5194/asr-17-191-2020, https://doi.org/10.5194/asr-17-191-2020, 2020
Short summary
Short summary
Climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this frame, the Pyrenees constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions. The impact of the scenarios becomes significant for the second half of the 21st century.
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Eroteida Sánchez-García, José Voces-Aboy, Beatriz Navascués, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 16, 165–174, https://doi.org/10.5194/asr-16-165-2019, https://doi.org/10.5194/asr-16-165-2019, 2019
Short summary
Short summary
We have described a methodology for ensemble member’s weighting of operational seasonal forecasting systems based on an enhanced prediction of a driver of climate variability strongly affecting certain climate variables (e.g. temperature, precipitation) over a certain region. We have applied it to the North Atlantic Oscillation influence on the Iberian Peninsula winter precipitation. This approach is fully general and consequently applicable to any other SFS providing a skilful NAO signal.
Jose Voces-Aboy, Inmaculada Abia-Llera, Eroteida Sánchez-García, Beatriz Navascués, Ernesto Rodríguez-Camino, María Nieves Garrido-del-Pozo, María Concepción García-Gómez, José Adolfo Álvarez-González, and Fernando Pastor-Argüello
Adv. Sci. Res., 16, 157–163, https://doi.org/10.5194/asr-16-157-2019, https://doi.org/10.5194/asr-16-157-2019, 2019
Short summary
Short summary
This is a web-based toolbox created to support decision-making process by water managers in Spanish reservoirs. It provides a set of tools to explore hydrologic variability linked to climate variability and a precipitation/reservoir inflow seasonal forecast over Spain.
María Pilar Amblar-Francés, María Asunción Pastor-Saavedra, María Jesús Casado-Calle, Petra Ramos-Calzado, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 15, 217–230, https://doi.org/10.5194/asr-15-217-2018, https://doi.org/10.5194/asr-15-217-2018, 2018
Short summary
Short summary
The Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference downscaled regional climate change projections over Spain. Its strategy aims at exploiting all the available sources of information on climate change projections. In the future this service aims at complementing the Copernicus Climate Change Service (C3S) in terms of resolution, expression of uncertainty, visualization, tailored adjustments and reinforcement of links with national users.
Cited articles
Breusch, T. S.: Testing for Autocorrelation in Dynamic Linear Models,
Australian, Economic Papers, 17, 334–355, https://doi.org/10.1111/j.1467-8454.1978.tb00635.x, 1978.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C., Van De Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J., Park, B., Peubey, C., De Rosnay, P., Tavolato, C.,
Thépaut, J., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., and Rodrigues, L. R.: Seasonal climate predictability and forecasting:
status and prospects, WIREs Climate Change, 4, 245–268, https://doi.org/10.1002/WCC.217, 2013.
Eden, J. M., van Oldenborgh, G. J., Hawkins, E., and Suckling, E. B.: A global empirical system for probabilistic seasonal climate prediction, Geosci. Model Dev., 8, 3947–3973, https://doi.org/10.5194/gmd-8-3947-2015, 2015.
Godfrey, G.: Testing against general autoregressive and moving average
error models when the regressors include lagged dependent variables,
Econometrica, 46, 1293–1301, 1978.
Kim, H. M., Webster, P. J., and Curry, J. A.: Seasonal prediction skill of ECMWF
System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere
Winter, Clim. Dynam., 39, 2957, https://doi.org/10.1007/s00382-012-1364-6, 2012.
Pasqui, M., Genesio, L., Crisci Primicerio, J., Benedetti, R., and Maracchi, G.:
An adaptive multi-regressive method for summer seasonal forecast in the
Mediterranean area, 87th AMS, 13–16 January 2007.
Sánchez-García, E., Voces Aboy, J., and Rodríguez Camino, E.:
Verification of six operational seasonal forecast systems over Europe and
Northern Africa, Technical note, AEMET, available at:
http://medcof.aemet.es/index.php/models-skill-over-mediterranean (last
access: 31 May 2019)
2018.
Schneider, U., Ziese, M., Meyer-Christoffer, A., Finger, P., Rustemeier, E., and Becker, A.: The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources, Proc. IAHS, 374, 29–34, https://doi.org/10.5194/piahs-374-29-2016, 2016.
Toreti, A., Xoplaki, E., Maraun, D., Kuglitsch, F. G., Wanner, H., and Luterbacher, J.: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns, Nat. Hazards Earth Syst. Sci., 10, 1037–1050, https://doi.org/10.5194/nhess-10-1037-2010, 2010.
Wang, L., Ting, M., and Kushner, P. J.: A robust empirical seasonal prediction of winter NAO and surface climate, Nature Scientific Reports, 7, 279, 353, https://doi.org/10.1038/s41598-017-00353-y, 2017.
Weisheimer, A., Palmer, T. N., and Doblas-Reyes, F. J.: Assessment of
representations of model uncertainty in monthly and seasonal forecast
ensembles, Geophys. Res. Lett., 38, L16703, https://doi.org/10.1029/2011GL048123, 2011.
Wilks, D.: Statistical Methods in the Atmospheric Sciences, Academic Press,
London, 2006.
Short summary
In the frame of MEDSCOPE project, a seasonal forecast empirical model for the Mediterranean is proposed. It uses a sub regions based set up, with different inputs for every area, from an initial set of global climate indices. However, is configurated to be able to easily incorporate other sources of information. Results show spatially consistent structure, and measurements of its skill shows it performs at the level (and better over some areas) of main dynamical models for seasonal forecasting.
In the frame of MEDSCOPE project, a seasonal forecast empirical model for the Mediterranean is...