High resolution climate change projections for the Pyrenees region
María P. Amblar-Francés
AEMET, Sevilla, 41092, Spain
Petra Ramos-Calzado
AEMET, Sevilla, 41092, Spain
Jorge Sanchis-Lladó
AEMET, Madrid, 28040, Spain
Alfonso Hernanz-Lázaro
AEMET, Madrid, 28040, Spain
María C. Peral-García
AEMET, Madrid, 28040, Spain
Beatriz Navascués
AEMET, Madrid, 28040, Spain
Marta Dominguez-Alonso
AEMET, Madrid, 28040, Spain
María A. Pastor-Saavedra
CORRESPONDING AUTHOR
AEMET, Madrid, 28040, Spain
Ernesto Rodríguez-Camino
AEMET, Madrid, 28040, Spain
Related authors
María Pilar Amblar-Francés, María Asunción Pastor-Saavedra, María Jesús Casado-Calle, Petra Ramos-Calzado, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 15, 217–230, https://doi.org/10.5194/asr-15-217-2018, https://doi.org/10.5194/asr-15-217-2018, 2018
Short summary
Short summary
The Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference downscaled regional climate change projections over Spain. Its strategy aims at exploiting all the available sources of information on climate change projections. In the future this service aims at complementing the Copernicus Climate Change Service (C3S) in terms of resolution, expression of uncertainty, visualization, tailored adjustments and reinforcement of links with national users.
Jorge Tamayo, Ernesto Rodriguez-Camino, Alfonso Hernanz, and Sara Covaleda
Adv. Sci. Res., 19, 105–115, https://doi.org/10.5194/asr-19-105-2022, https://doi.org/10.5194/asr-19-105-2022, 2022
Short summary
Short summary
There has been developed for Central America downscaled climate change scenarios using the same methodology, that allows a joint analysis for the whole region. The high number of simulations improves the situation prior to the start of the action, where each country had a limited number of projections that differed in terms of background information, methodology and resolution. A web based viewer allows consultations and download on 37 different climatic variables and derived indices.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Esteban Rodríguez-Guisado, Antonio Ángel Serrano-de la Torre, Eroteida Sánchez-García, Marta Domínguez-Alonso, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 16, 191–199, https://doi.org/10.5194/asr-16-191-2019, https://doi.org/10.5194/asr-16-191-2019, 2019
Short summary
Short summary
In the frame of MEDSCOPE project, a seasonal forecast empirical model for the Mediterranean is proposed. It uses a sub regions based set up, with different inputs for every area, from an initial set of global climate indices. However, is configurated to be able to easily incorporate other sources of information. Results show spatially consistent structure, and measurements of its skill shows it performs at the level (and better over some areas) of main dynamical models for seasonal forecasting.
Eroteida Sánchez-García, José Voces-Aboy, Beatriz Navascués, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 16, 165–174, https://doi.org/10.5194/asr-16-165-2019, https://doi.org/10.5194/asr-16-165-2019, 2019
Short summary
Short summary
We have described a methodology for ensemble member’s weighting of operational seasonal forecasting systems based on an enhanced prediction of a driver of climate variability strongly affecting certain climate variables (e.g. temperature, precipitation) over a certain region. We have applied it to the North Atlantic Oscillation influence on the Iberian Peninsula winter precipitation. This approach is fully general and consequently applicable to any other SFS providing a skilful NAO signal.
Jose Voces-Aboy, Inmaculada Abia-Llera, Eroteida Sánchez-García, Beatriz Navascués, Ernesto Rodríguez-Camino, María Nieves Garrido-del-Pozo, María Concepción García-Gómez, José Adolfo Álvarez-González, and Fernando Pastor-Argüello
Adv. Sci. Res., 16, 157–163, https://doi.org/10.5194/asr-16-157-2019, https://doi.org/10.5194/asr-16-157-2019, 2019
Short summary
Short summary
This is a web-based toolbox created to support decision-making process by water managers in Spanish reservoirs. It provides a set of tools to explore hydrologic variability linked to climate variability and a precipitation/reservoir inflow seasonal forecast over Spain.
María Pilar Amblar-Francés, María Asunción Pastor-Saavedra, María Jesús Casado-Calle, Petra Ramos-Calzado, and Ernesto Rodríguez-Camino
Adv. Sci. Res., 15, 217–230, https://doi.org/10.5194/asr-15-217-2018, https://doi.org/10.5194/asr-15-217-2018, 2018
Short summary
Short summary
The Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference downscaled regional climate change projections over Spain. Its strategy aims at exploiting all the available sources of information on climate change projections. In the future this service aims at complementing the Copernicus Climate Change Service (C3S) in terms of resolution, expression of uncertainty, visualization, tailored adjustments and reinforcement of links with national users.
Cited articles
Amblar-Francés, P., Casado-Calle, M. J., Pastor-Saavedra, M. A., Ramos-Calzado, P., and Rodríguez-Camino, E.: Guía de escenarios
regionalizados de cambio climático sobre España a partir de los
resultados del IPCC-AR5, available at:
https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/Guia_escenarios_AR5/Guia_escenarios_AR5.pdf
(last access: 26 September 2020), 2017.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010GL046270, 2011.
Benestad, R. E.: Empirically Downscaled Multimodel Ensemble Temperature and
Precipitation Scenarios for Norway, J. Climate, 15, 3008–3027, 2002.
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model: description, control climate and evaluation, Aust. Meteorol. Ocean., 63, 41–64, 2013.
Castellano, C. M. and DeGaetano, A. T.: Downscaling Extreme Precipitation from CMIP5 Simulations Using Historical Analogs, J. Appl. Meteorol. Clim., 56, 2421–2439, https://doi.org/10.1175/JAMC-D-16-0250.1, 2017.
Daley, R.: Atmospheric data Analysis, Cambridge University Press, Cambridge,
UK, 457 pp., 1991.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beeljars, A. C. M., van den Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
del Barrio, G., Creus, J., and Puigdefabregas, J.: Thermal Seasonality of the High Mountain Belts of the Pyrenees, Mount. Res. Dev. 10, 227–233, https://doi.org/10.2307/3673602, 1990.
Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3, J. Climate, 24, 3484–3519, 2011.
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethe, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165, 2013.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for
hydrological modelling, Int. J. Climatol., 27, 1547–1578, 2007.
Frei, C. and Schar, C.: A precipitation climatology of the Alps from high-resolution rain-gauge observations, Int. J. Climatol., 18, 873–900, https://doi.org/10.1029/98GL51099, 1998.
García-Ruiz, J. M., Beguería, S., López-Moreno, J. I., Lorente, A., and Seeger, M.: Los recursos hídricos superficiales del Pirineo aragonés y su evolución reciente, Geoforma Ediciones, Logroño, 192 pp., 2001.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Giorgi, F., Hewitson, B., Arritt, R., Gutowski, W., Knutson, T., and Landsea, C.: Regional Climate Information-Evaluation and Projections, in: Geological and Atmospheric Sciences Publications, 110, available at: https://lib.dr.iastate.edu/ge_at_pubs/110 (last access: 26 September 2020), 2001.
Giorgi, F. and Coppola, E.: Projections of twenty-first century climate
over Europe, Eur. Phys. J. Conf., 1, 29–46, https://doi.org/10.1140/epjconf/e2009-00908-9, 2009.
Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowalczyk, E. A., O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G., and Elliott, T. I.: The CSIRO Mk3 climate system model, CSIRO Atmospheric Research Technical Paper No. 60, CSIRO, Australia, 2002.
Gutiérrez, J. M., Maraun, D., Widman, M., Huth, R., Hertig, E., Benestad,
R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martin, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M.,
Dubrovsky, Ribalaygua, J., Portoles, J., Raty, O., Raisanen, J., Hingray, B., Raynaud, D., Casado, M. J., Ramos, P., Zerenner, T., Turco, M., Bosshard, T., Stepanek, P., Bartholy, J., Pongracz, R., Keller, D. E., Fischer, A. M.,
Cardoso, R. M., Soares, P. M. M., Czernecki, B., and Page, C.: An intercomparison of a large ensemble of statistical downscaling methods over
Europe: Results from the VALUE perfect predictor cross-validation experiment, Int. J. Climatol., 39, 3750–3785, https://doi.org/10.1002/joc.5462, 2019.
Hertig, E., Maraun, D., Bartholy, J., Pongracz, R., Vrac, M., Mares, I.,
Gutiérrez, J. M., Wibig, J., Casanueva, A., and Soares, P. M. M.: Comparison of statistical downscaling methods with respect to extreme events
over Europe: Validation results from the perfect predictor experiment of the
COST Action VALUE, Int. J. Climatol., 39, 3846–3867, https://doi.org/10.1002/joc.5469, 2019.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The community earth system model: a framework for collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013.
IPCC: Technical Summary, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/04_SROCC_TS_FINAL.pdf
(last access: 26 September 2020), 2019.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J. F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Ji, D., Wang, L., Feng, J., Wu, Q., Cheng, H., Zhang, Q., Yang, J., Dong, W., Dai, Y., Gong, D., Zhang, R. H., Wang, X., Liu, J., Moore, J. C., Chen, D., and Zhou, M.: Description and basic evaluation of Beijing Normal University Earth system model (BNU-ESM) version 1, Geosci. Model Dev., 7, 2039–2064, https://doi.org/10.5194/gmd-7-2039-2014, 2014.
Karl, T. R., Nicholls, N., and Ghazi, A.: CLIVAR/GCOS/WMO workshop on indices
and indicators for climate extremes: Workshop summary, Climatic Change, 42,
3–7, 1999.
Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., Camilloni, I., Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M., Meehl, G. A., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G., and Wang, H. J.: Near-term Climate Change: Projections and Predictability, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2013.
Kitoh, A., Ose, T., and Takayabu, I.: Dynamical downscaling for climate
projection with high-resolution MRI AGCM-RCM, J. Meteorol. Soc. Jpn. A, 94,
1–16, https://doi.org/10.2151/jmsj.2015-022, 2016.
Landelius, T., Dahlgren, P., Gollvik, S., Jansson, A., and Olsson, E.: A
high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind, Q. J. Roy. Meteorol. Soc., 142,
2132–2142, https://doi.org/10.1002/qj.2813, 2016.
Liebmann, B. and Allured, D.: Daily Precipitation Grids for South America,
B. Am. Meteorol. Soc., 86, 1567–1570, https://doi.org/10.1175/BAMS-86-11-1567, 2005.
López-Moreno, J. I., Vicente-Serrano, S. M., Angulo-Martínez, S M.,
Beguería, S., and El Kenawy, A.: Trends in daily precipitation on the
northeastern Iberian Peninsula, 1955–2006, Int. J. Climatol., 30, 1026–1041, https://doi.org/10.1002/joc.1945, 2010.
Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for
Climate Research, Cambridge University Press, Cambridge, ISBN 978-1-107-06605-2, https://doi.org/10.1017/9781107588783, 2018.
Maraun, D., Huth, R., Gutiérrez, J. M., Martín, D. S., Dubrovsky, M., Fischer, A., Widmann, M., Casado, M. J., Ramos, P., and Bedia, J.: The VALUE perfect predictor experiment: evaluation of temporal variability, Int. J. Climatol., 39, 3786–3818, 2019.
Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., Mc-Donald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757,
https://doi.org/10.5194/gmd-4-723-2011, 2011.
Maurer, E. P. and Hidalgo, H. G.: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods, Hydrol. Earth Syst. Sci., 12, 551–563, https://doi.org/10.5194/hess-12-551-2008, 2008.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land–atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges, Ann. NY Acad. Sci., 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019.
Navascués, B., Rodríguez, E., Ayuso, J. J., and Järvenoja, S.:
Analysis of surface variables and parameterization of surface processes in
HIRLAM. Part II: Seasonal assimilation experiment, HIRLAM Technical Report 59, SMHI, Norrköping, Sweden, 2003.
Nogués-Bravo, D., Bastos-Araujo, M., Lasanta, T., and López-Moreno,
I.: Climate Change in Mediterranean Mountains during the 21st Century, Ambio, 37, 280-5, 2008.
Peña, J. L. and Lozano, M. V.: Las unidades del relieve aragonés, available at: http://age.ieg.csic.es/fisica/docs/002.pdf (last access: 26 September 2020), 2004.
Peral, C., Navascués, B., and Ramos, P.: Serie de precipitación
diaria en rejilla con fines climáticos, Nota Técnica no. 24, AEMET, available at:
http://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/NT_24_AEMET/NT_24_AEMET.pdf
(last access: 26 September 2020), 2017.
Perry, M. and Hollis, D.: The development of a new set of longterm climate
averages for the UK, Int. J. Climatol., 25, 1023–1039, 2005.
Petisco de Lara, S. E.: Método de regionalización de precipitación basado en análogos, Explicación y Validación,
Nota Técnica 3A, Área de Evaluación y Modelización del
Cambio Climático, AEMET, Madrid, 2008.
Rico, I., Izagirre, E., Serrano, E., and López-Moreno, J. I.: Current
glacier area in the Pyrenees: an updated assessment 2016, Pirineos, 172, e029, https://doi.org/10.3989/Pirineos.2017.172004, 2017.
Rodríguez, E., Navascués, B., Ayuso, J. J., and Järvenoja, S.:
Analysis of surface variables and parameterization of surface processes in
HIRLAM. Part I: Approach and verification by parallel runs, HIRLAM Technical
Report 58, SMHI, Norrköping, Sweden, 2003.
Rummukainen, M.: State-of-the-art with Regional Climate Models, Wiley Interdisciplin. Rev.: Clim. Change, 1, 82–96, 2010.
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini, E., Vichi, M., Oddo, P., and Navarra, A.: Effects of Tropical Cyclones on Ocean Heat Transport in a High Resolution Coupled General Circulation Model, J. Climate, 24, 4368–4384, 2011.
Smid, M. and Costa, A. C.: Climate projections and downscaling techniques: a discussion for impact studies in urban systems, Int. J. Urban Sci., 22, 277–307, 2018
Soares, P. M., Maraun, D., Brands, S., Jury, M. W., Gutiérrez, J. M.,
San-Martín, D., Hertig, E., Huth, R., Vozila, A. B., Cardoso, R. M.,
Kotlarski, S., Dobrinski, P., and Obermann-Hellhund, A.: Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods, Int. J. Climatol., 39, 3868–3893, 2019
Stennet-Brown, R., Jones, J. J., Stephenson, T. S., and Taylor, M.: Future
Caribbean temperature and rainfall extremes from statistical downscaling:
Statistical Downscaling of Caribbean Temperature and Rainfall, Int. J. Climatol., 37, 4828–4845, https://doi.org/10.1002/joc.5126, 2017.
Takayabu, I., Kanamuru, H., Dairaku, K., Benestad, R., von Storch, H., and
Christensen, J. H.: Reconsidering the Quality and Utility of Downscaling,
J. Meteorol. Soc. Jpn. A, 94, 31–45, https://doi.org/10.2151/jmsj.2015-042, 2016.
Trzaska, S. and Schnarr, E.: A Review of Downscaling Methods for Climate
Change Projections: African and Latin American Resilience to Climate Change (ARCC), available at:
http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf (last access: 26 September 2020), 2014.
van den Besselaar, E. J. M., van der Schrier, G., Cornes, R., Iqbal, A. S.,
and Klein-Tank, A. M. G.: SA-OBS: A Daily Gridded Surface Temperature and
Precipitation Dataset for Southeast Asia, J. Climate, 30, 5151–5165,
https://doi.org/10.1175/JCLI-D-16-0575.1, 2017.
Voldoire, A., Sanchez-Gomez, E., Mélia, D. S., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M. P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global climate model: description and basic evaluation, Clim. Dynam., 40, 2091–2121, 2013.
Volodin, E. M., Dianskii, N. A., and Gusev, A. V.: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations, IZV Atmos. Ocean. Phys., 46, 414–431, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Weare, B. C., Cagnazzo, C., Fogli, P. G., Manzini, E., and Navarra, A.: Madden-Julian Oscillation in a climate model with a well-resolved stratosphere, J. Geophys. Res.-Atmos.,117, D01103, https://doi.org/10.1029/2011JD016247, 2012.
WEF – World Economic Forum: The Global Competitiveness Report 2018, 671 pp., available at:
http://www3.weforum.org/docs/GCR2018/05FullReport/WEF_TheGlobalCompetitivenessReport2018.pdf (last access: 26 September 2020), 2018.
WEF – World Economic Forum: The Global Competitiveness Report 2019, 666 pp., available at:
http://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf (last access: 26 September 2020), 2019.
WEF – World Economic Forum: The Global Risks Report 2020, 102 pp., available at:
http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf (last access: 26 September 2020), 2020.
Wetterhall, F.: Statistical downscaling of precipitation from Large-scale
Atmospheric circulation. Comparison of Methods and Climate Regions, available at: https://www.diva-portal.org/smash/get/diva2:166978/FULLTEXT01.pdf
(last access: 26 September 2020), 2005.
Widmann, M., Bedia, J., Gutiérrez, J. M., Bosshard, T., Hertig, E.,
Maraun, D, Casado, M. J., Ramos, P., Cardoso, R. M., Soares, P. M. M., Ribalaygua, J., Pagé, C., Fischer, A. M., Herrera, S., and Huth, R.:
Validation of spatial variability in downscaling results from the VALUE
perfect predictor experiment, Int. J. Climatol., 39, 3819–3845, 2019.
Wilby, R. L. and Wigley, T. M. L.: Precipitation predictors for downscaling: observed and general circulation model relationships, Int. J. Climatol., 20, 641–661, 2000.
Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., and Mearns, L. O.: Guidelines for use of climate scenarios developed from statistical downscaling methods, Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 27 pp., available at: https://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf
(last access: 26 September 2020), 2004.
Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., Zhang, Y., Li, J., Zhang, F., Wei, M., Shi, X., Wu, F., Zhang, L., Chu, M., Jie, W., Liu, Y., Wang, F., Liu, X., Li, Q., Dong, M., Liang, X., Gao, Y., and Zhang, J.: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century, J. Geophys. Res.-Atmos., 118, 4326–4347, https://doi.org/10.1002/jgrd.50320, 2013.
Xiao-Ge, X., Tong-Wen, W., Jiang–ong, L., Zai-Zhi, W., Wei-Ping, L., and Fang-Hua, W.: How well does BCC_CSM1.1 reproduce the 20th century climate change over China?, Atmos. Ocean. Sci. Lett., 6, 21–26, 2013.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A new global climate model of the Meteorological Research Institute: MRI-CGCM3-model description and basic performance, J. Meteorol. Soc. Jpn., 90, 23–64, https://doi.org/10.2151/jmsj.2012-A02, 2012.
Short summary
Climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this frame, the Pyrenees constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions. The impact of the scenarios becomes significant for the second half of the 21st century.
Climate change projections for precipitation and temperature are a crucial element for...