Articles | Volume 19
Adv. Sci. Res., 19, 81–90, 2022
https://doi.org/10.5194/asr-19-81-2022
Adv. Sci. Res., 19, 81–90, 2022
https://doi.org/10.5194/asr-19-81-2022
 
18 Aug 2022
18 Aug 2022

Microclimatic field measurements to support microclimatological modelling with ENVI-met for an urban study area in Cologne

Nils Eingrüber et al.

Related authors

A comprehensive dataset of vegetation states, fluxes of matter and energy, weather, agricultural management, and soil properties from intensively monitored crop sites in western Germany
Tim G. Reichenau, Wolfgang Korres, Marius Schmidt, Alexander Graf, Gerhard Welp, Nele Meyer, Anja Stadler, Cosimo Brogi, and Karl Schneider
Earth Syst. Sci. Data, 12, 2333–2364, https://doi.org/10.5194/essd-12-2333-2020,https://doi.org/10.5194/essd-12-2333-2020, 2020
An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India
P. D. Wagner, S. Kumar, and K. Schneider
Hydrol. Earth Syst. Sci., 17, 2233–2246, https://doi.org/10.5194/hess-17-2233-2013,https://doi.org/10.5194/hess-17-2233-2013, 2013

Cited articles

Acero, J. A. and Arrizabalaga, J.: Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions, Theor. Appl. Climatol., 131, 455–469, https://doi.org/10.1007/s00704-016-1971-y, 2018. 
Ambrosini, D., Galli, G., Mancini, B., Nardi, I., and Sfarra, S.: Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-Met®climate model, Sustainability, 6, 7013–7029, https://doi.org/10.3390/su6107013, 2014. 
Bande, L., Afshari, A., Al Masri, D., Jha, M., Norford, L., Tsoupos, A., Marpu, P., Pasha, Y., and Armstrong, P.: Validation of UWG and ENVI-Met Models in an Abu Dhabi District, Based on Site Measurements, Sustainability, 11, 4378, https://doi.org/10.3390/su11164378, 2019. 
Crank, P. J., Sailor, D. J., Ban-Weiss, G., and Taleghani, M.: Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies, Urban Climate, 26, 188–197, https://doi.org/10.1016/j.uclim.2018.09.002, 2018. 
Declet-Barreto, J., Brazel, A. J., Martin, C. A., Chow, W. T., and Harlan, S. L.: Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ, Urban Ecosystems, 16, 617–635, https://doi.org/10.1007/s11252-012-0278-8, 2013. 
Download
Short summary
Cities are particularly affected by climate change. Adaptation strategies require data, models and scenario analyses. This paper characterizes the urban microclimate of a 16 ha study area in Cologne based on a network of 33 calibrated and validated sensors. Using statistical analyses, tests and pairwise comparisons, significant microclimatic differences were identified between a park, courtyard, avenue and narrow street. The data will be used in future to validate an ENVI-met microclimate model.