Winter Subseasonal Wind Speed Forecasts for Finland from ECMWF
Finnish Meteorological Institute, Weather and Climate Change Impact Research, Helsinki, Finland
Terhi K. Laurila
Finnish Meteorological Institute, Weather and Climate Change Impact Research, Helsinki, Finland
Olle Räty
Finnish Meteorological Institute, Meteorological Research, Helsinki, Finland
Natalia Korhonen
Finnish Meteorological Institute, Weather and Climate Change Impact Research, Helsinki, Finland
Andrea Vajda
Finnish Meteorological Institute, Weather and Climate Change Impact Research, Helsinki, Finland
Hilppa Gregow
Finnish Meteorological Institute, Weather and Climate Change Impact Research, Helsinki, Finland
Related authors
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
Andrea Vajda, Hilppa Gregow, Natalia Korhonen, Jari Lavonen, Katja Anniina Lauri, Risto Makkonen, Joonas Merikanto, Antti Mäkelä, Petri Räisänen, Veli-Matti Vesterinen, Ilona Ylivinkka, Mikko Äijälä, Andrea Böhnisch, and Laura Riuttanen
EGUsphere, https://doi.org/10.5194/egusphere-2026-227, https://doi.org/10.5194/egusphere-2026-227, 2026
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
The paper describes the development of a new graduate course, Living with Changing Climate, designed to help future professionals apply climate information in real-world decisions. Created by experts from several fields, the course combines climate science, data use and real-word applications. Piloting with diverse students revealed challenges and improvements that strengthened the final course, showing how higher education can better prepare learners for climate adaptation and mitigation.
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025, https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing the 92 most damaging windstorms (2005–2018). The south-west- and north-west-arriving windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
Cited articles
Baran, S. and Lerch, S.: Mixture EMOS model for calibrating ensemble forecasts
of wind speed, Environmetrics, 27, 116–130, https://doi.org/10.1002/env.2380, 2016. a
Buizza, R. and Leutbecher, M.: The forecast skill horizon, Q. J.
Roy. Meteor. Soc., 141, 3366–3382, https://doi.org/10.1002/qj.2619,
2015. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
ECMWF: IFS documentation, CY43R2, Part V: Ensemble Prediction System,
ECMWF, available at:
https://www.ecmwf.int/sites/default/files/elibrary/2016/17118-part-v-ensemble-prediction-system.pdf (last access: 2 August 2021),
2016. a
Ervasti, T., Gregow, H., Vajda, A., Laurila, T. K., and Mäkelä, A.: Mapping users' expectations regarding extended-range forecasts, Adv. Sci. Res., 15, 99–106, https://doi.org/10.5194/asr-15-99-2018, 2018. a
Ferro, C. A. T., Richardson, D. S., and Weigel, A. P.: On the effect of
ensemble size on the discrete and continuous ranked probability scores,
Meteorol. Appl., 15, 19–24, https://doi.org/10.1002/met.45, 2008. a, b
Friederichs, P., Wahl, S., and Buschow, S.: Postprocessing for Extreme Events,
in: Statistical Postprocessing of Ensemble Forecasts, edited by: Vannitsem,
S., Wilks, D., and Messner, J., Elsevier, Amsterdam, 2018. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., Zhao, B., Gelaro, R., McCarty, W., Suárez,
M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A.,
Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper,
C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K.,
Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson,
S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao,
B.: The Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T.: Calibrated
Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum
CRPS Estimation, Mon. Weather Rev., 133, 1098–1118,
https://doi.org/10.1175/MWR2904.1, 2005. a
Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for
Ensemble Prediction Systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 Global
Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Jordan, A., Krüger, F., and Lerch, S.: Evaluating Probabilistic
Forecasts with scoringRules, J. Stat. Softw., 90, 12, https://doi.org/10.18637/jss.v090.i12,
2019. a
Kharin, V. V. and Zwiers, F. W.: On the ROC Score of Probability Forecasts,
J. Climate, 16, 4145–4150,
https://doi.org/10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2, 2003. a
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N.,
Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet
streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440,
https://doi.org/10.1038/NGEO2424, 2015. a
Korhonen, N., Hyvärinen, O., Kämäräinen, M., Richardson, D. S., Järvinen, H., and Gregow, H.: Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations, Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020, 2020. a
Liu, Y., Racah, E., Prabhat, Correa, J., Khosrowshahi, A., Lavers, D., Kunkel,
K., Wehner, M., and Collins, W.: Application of Deep Convolutional Neural
Networks for Detecting Extreme Weather in Climate Datasets, arXiv [preprint], arXiv:1605.01156 (last access: 2 August 2021), 2016. a
Lynch, K. J., Brayshaw, D. J., and Charlton-Perez, A.: Verification of
European Subseasonal Wind Speed Forecasts, Mon. Weather Rev., 142,
2978–2990, https://doi.org/10.1175/MWR-D-13-00341.1, 2014. a, b, c, d
Matsueda, M. and Nakazawa, T.: Early warning products for severe weather
events derived from operational medium-range ensemble forecasts,
Meteorol. Appl., 22, 213–222, https://doi.org/10.1002/met.1444, 2015. a
Messner, J. W., Mayr, G. J., and Zeileis, A.: Heteroscedastic Censored and
Truncated Regression with crch, R J., 8, 173–181,
https://doi.org/10.32614/RJ-2016-012, 2016. a, b, c
Neal, R. A., Boyle, P., Grahame, N., Mylne, K., and Sharpe, M.: Ensemble based
first guess support towards a risk-based severe weather warning service,
Meteorol. Appl., 21, 563–577, https://doi.org/10.1002/met.1377, 2014. a
Patton, A.: Correction to “Automatic Block-Length Selection for the Dependent
Bootstrap” by D. Politis and H. White, Economet. Rev., 28, 372–375,
https://doi.org/10.1080/07474930802459016, 2009. a
Pinson, P.: Wind Energy: Forecasting Challenges for Its Operational
Management, Stat. Sci., 28, 564–585, https://doi.org/10.1214/13-STS445,
2013. a
Pinson, P. and Messner, J. W.: Application of Postprocessing for Renewable
Energy, in: Statistical Postprocessing of Ensemble Forecasts, edited by:
Vannitsem, S., Wilks, D., and Messner, J., Elsevier, Amsterdam, 2018. a
Raftery, A. E.: Use and communication of probabilistic forecasts, Stat. Anal. Data Min., 9, 397–410,
https://doi.org/10.1002/sam.11302, 2016. a
Rasp, S. and Lerch, S.: Neural Networks for Postprocessing Ensemble Weather
Forecasts, Mon. Weather Rev., 146, 3885–3900,
https://doi.org/10.1175/MWR-D-18-0187.1, 2018. a
Siegert, S. and Stephenson, D. B.: Forest Recalibration and Multimodel
Combination, in: Subseasonal to Seasonal Prediction Project: the gap between
weather and climate forecasting, edited by: Robertson, A. W. and Vitart, F., Elsevier, Amsterdam, 2019. a
Thorarinsdottir, T. L. and Gneiting, T.: Probabilistic forecasts of wind
speed: ensemble model output statistics by using heteroscedastic censored
regression, J. Roy. Stat. Soc. Ser. A, 173, 371–388, https://doi.org/10.1111/j.1467-985X.2009.00616.x, 2010. a
Toth, Z. and Buizza, R.: Weather forecasting: what sets the forecast skill
horizon?, in: Sub-seasonal to seasonal prediction: the gap between weather
and climate forecasting, edited by: Robertson, A. W. and Vitart, F., Elsevier, Amsterdam, 2018. a
Vigaud, N., Robertson, A., and Tippett, M. K.: Predictability of Recurrent
Weather Regimes over North America during Winter from Submonthly
Reforecasts, Mon. Weather Rev., 146, 2559–2577,
https://doi.org/10.1175/MWR-D-18-0058.1, 2018.
a
Vitart, F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q.
J. Roy. Meteor. Soc., 140, 1889–1899,
https://doi.org/10.1002/qj.2256, 2014. a, b
White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J., Lazo, J. K., Kumar,
A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani,
S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R.,
Kjellström, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D.,
Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L.,
Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H.,
Arheimer, B., and Zebiak, S. E.: Potential applications of
subseasonal-to-seasonal (S2S) predictions, Meteorol. Appl., 24,
315–325, https://doi.org/10.1002/met.1654, 2017. a
Wilks, D. S.: Comparison of ensemble-MOS methods in the Lorenz '96 setting,
Meteorol. Appl., 13, 243, https://doi.org/10.1017/S1350482706002192, 2006. a
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We...