Articles | Volume 19
https://doi.org/10.5194/asr-19-13-2022
https://doi.org/10.5194/asr-19-13-2022
02 May 2022
 | 02 May 2022

Using machine learning to produce a cost-effective national building height map of Ireland to categorise local climate zones

Eoghan Keany, Geoffrey Bessardon, and Emily Gleeson

Related authors

Using machine learning to produce a very high resolution land-cover map for Ireland
Eoin Walsh, Geoffrey Bessardon, Emily Gleeson, and Priit Ulmas
Adv. Sci. Res., 18, 65–87, https://doi.org/10.5194/asr-18-65-2021,https://doi.org/10.5194/asr-18-65-2021, 2021
Short summary
HARMONIE-AROME single-column tools and experiments
Emily Gleeson, Stephen Outten, Bjørg Jenny Kokkvoll Engdahl, Eoin Whelan, Ulf Andrae, and Laura Rontu
Adv. Sci. Res., 17, 255–267, https://doi.org/10.5194/asr-17-255-2020,https://doi.org/10.5194/asr-17-255-2020, 2020
Short summary
Teleconnections and Extreme Ocean States in the Northeast Atlantic Ocean
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019,https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary
Evaluation of Windsond S1H2 performance in Kumasi during the 2016 DACCIWA field campaign
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019,https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign
Norbert Kalthoff, Fabienne Lohou, Barbara Brooks, Gbenga Jegede, Bianca Adler, Karmen Babić, Cheikh Dione, Adewale Ajao, Leonard K. Amekudzi, Jeffrey N. A. Aryee, Muritala Ayoola, Geoffrey Bessardon, Sylvester K. Danuor, Jan Handwerker, Martin Kohler, Marie Lothon, Xabier Pedruzo-Bagazgoitia, Victoria Smith, Lukman Sunmonu, Andreas Wieser, Andreas H. Fink, and Peter Knippertz
Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018,https://doi.org/10.5194/acp-18-2913-2018, 2018
Short summary

Cited articles

Alcoforado, M. J., Lopes, A., Alves, E. D. L., and Canário, P.: Lisbon Heat Island, Finisterra, 49, 61–80, https://doi.org/10.18055/Finis6456, 2014. a
Alexander, P. J. and Mills, G.: Local climate classification and Dublin's urban heat island, Atmosphere, 5, 755–774, https://doi.org/10.3390/atmos5040755, 2014. a
Bessardon, G. and Gleeson, E.: Using the best available physiography to improve weather forecasts for Ireland, in: Challenges in High Resolution Short Range NWP at European level including forecaster-developer cooperation, European Meteorological Society, Lyngby, https://presentations.copernicus.org/EMS2019/EMS2019-702_presentation.pdf (last access: 28 March 2022), 2019. a
Cai, M., Ren, C., Xu, Y., Lau, K. K. L., and Wang, R.: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – A case study of Yangtze River Delta, China, Urban Clim., 24, 485–502, https://doi.org/10.1016/J.UCLIM.2017.05.010, 2018. a
Download
Short summary
This work used machine learning to produce the first open source building height map of Ireland. This map is intended to more accurately determine Local Climate Zones for use in the underlying physiography dataset in the HARMONIE AROME numerical weather prediction model.