Computation of daily Penman–Monteith reference evapotranspiration in the Carpathian Region and comparison with Thornthwaite estimates
Mónika Lakatos
CORRESPONDING AUTHOR
Hungarian Meteorological Service, 1525 P. Box 38, Budapest, Hungary
Tamás Weidinger
Department of Meteorology, Eötvös Loránd University,
1117 Pázmány Péter s. 1/A, Budapest, Hungary
Lilla Hoffmann
Hungarian Meteorological Service, 1525 P. Box 38, Budapest, Hungary
Zita Bihari
Hungarian Meteorological Service, 1525 P. Box 38, Budapest, Hungary
Ákos Horváth
Hungarian Meteorological Service, 1525 P. Box 38, Budapest, Hungary
Related authors
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
J. Spinoni, T. Antofie, P. Barbosa, Z. Bihari, M. Lakatos, S. Szalai, T. Szentimrey, and J. Vogt
Adv. Sci. Res., 10, 21–32, https://doi.org/10.5194/asr-10-21-2013, https://doi.org/10.5194/asr-10-21-2013, 2013
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Beáta Molnár, Tamás Weidinger, and Péter Tasnádi
Adv. Sci. Res., 19, 159–165, https://doi.org/10.5194/asr-19-159-2023, https://doi.org/10.5194/asr-19-159-2023, 2023
Short summary
Short summary
We considered it important to complete the content knowledge of secondary school physics with those concerning atmospheric humidity, fog, and air pollution. For this aim, a three-hour teaching module was elaborated, which included the analysis of the air-polluting events together with the foggy weather. The experimental curriculum motivated the students to understand processes that take place in their environment regarding environmental protection.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Imre Salma, Máté Vörösmarty, András Zénó Gyöngyösi, Wanda Thén, and Tamás Weidinger
Atmos. Chem. Phys., 20, 15725–15742, https://doi.org/10.5194/acp-20-15725-2020, https://doi.org/10.5194/acp-20-15725-2020, 2020
Short summary
Short summary
Motor vehicle road traffic in Budapest was reduced by approximately 50% of its ordinary level due to COVID-19. In parallel, concentrations of most criteria air pollutants declined by 30–60%. Change rates of NO and NO2 with relative change in traffic intensity were the largest, total particle number concentration showed considerable dependency, while particulate matter mass concentrations did not appear to be related to urban traffic. Concentrations of O3 showed an increasing tendency.
Santtu Mikkonen, Zoltán Németh, Veronika Varga, Tamás Weidinger, Ville Leinonen, Taina Yli-Juuti, and Imre Salma
Atmos. Chem. Phys., 20, 12247–12263, https://doi.org/10.5194/acp-20-12247-2020, https://doi.org/10.5194/acp-20-12247-2020, 2020
Short summary
Short summary
We determined decennial statistical time trends and diurnal statistical patterns of atmospheric particle number concentrations in various relevant size fractions in the city centre of Budapest in an interval of 2008–2018. The mean overall decrease rate of particles in different size fractions was approximately −5 % scaled for the 10-year measurement interval. The decline can be interpreted as a consequence of the decreased anthropogenic emissions in the city.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Gabriella Lükő, Péter Torma, Tamás Krámer, Tamás Weidinger, Zeljko Vecenaj, and Branko Grisogono
Adv. Sci. Res., 17, 175–182, https://doi.org/10.5194/asr-17-175-2020, https://doi.org/10.5194/asr-17-175-2020, 2020
Short summary
Short summary
This paper proposes new relationships for momentum exchange through the air–water interface for medium size lakes. High-resolution wind and wave measurements were performed simultaneously in onshore and offshore stations in Lake Balaton. Our results show that the surface drag is remarkably higher compared to open ocean conditions due to the very young wave state which is a typical feature of midsize freshwater lakes.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Imre Salma, Zoltán Németh, Tamás Weidinger, Willy Maenhaut, Magda Claeys, Mihály Molnár, István Major, Tibor Ajtai, Noémi Utry, and Zoltán Bozóki
Atmos. Chem. Phys., 17, 13767–13781, https://doi.org/10.5194/acp-17-13767-2017, https://doi.org/10.5194/acp-17-13767-2017, 2017
Short summary
Short summary
The major finding of this study lies in the new pragmatic coupled radiocarbon–LVG apportionment scheme, which allows assessment of the contribution of the major carbonaceous species from fossil fuel combustion, biomass burning and biogenic sources with a reasonable uncertainty, and without coupling of thermal or separation methods with an AMS for rather small amounts of samples.
László Pásztor, Gábor Négyesi, Annamária Laborczi, Tamás Kovács, Elemér László, and Zita Bihari
Nat. Hazards Earth Syst. Sci., 16, 2421–2432, https://doi.org/10.5194/nhess-16-2421-2016, https://doi.org/10.5194/nhess-16-2421-2016, 2016
Short summary
Short summary
In Hungary wind erosion causes serious problems in agricultural production as well as in soil and environmental quality. Our aim was to provide a nationwide spatially detailed assessment of the susceptibility of land in Hungary to wind erosion, integrating different databases. According to the resulting map of wind erosion susceptibility, about 10% of the total area of Hungary can be identified as susceptible to wind erosion.
J. Spinoni, T. Antofie, P. Barbosa, Z. Bihari, M. Lakatos, S. Szalai, T. Szentimrey, and J. Vogt
Adv. Sci. Res., 10, 21–32, https://doi.org/10.5194/asr-10-21-2013, https://doi.org/10.5194/asr-10-21-2013, 2013
Cited articles
Ács, F.: On twenty-first century climate classification, European
multiregional analyses, Lambert Academic Publishing, Mauritius, 92 pp., ISBN 978-620-2-00302-5, 2017.
Ács, F., Breuer, H., and Szász, G.: Estimation of actual
evapotranspiration and soil water content in the growing season, Agrokémia és Talajtan, 1st online edition, selected and revised
English versions of Hungarian Agrokémia és Talajtan papers from 2000
to 2010, 60 Supplementum, 57–74, 2011.
Ács, F., Rajkai, K., Breuer, H., Mona, T., and Horváth, Á.:
Soil-atmosphere relationships: The Hungarian perspective, Open Geosci., 1,
395–406, https://doi.org/10.1515/geo-2015-0036, 2015.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, 300, D05109, 1998.
Anon, J.: Proceeding of the informal meeting on physics in agriculture,
Neth. J. Agric. Sci., 4, 1–162, 1956.
Bai, P., Liu, X., Liang, K., and Liu, C.: Comparison of performance of twelve monthly water balance models in different climatic catchments of China, J. Hydrol., 529, 1030–1040, https://doi.org/10.1016/j.jhydrol.2015.09.015, 2015.
Barik, M. G., Hogue, T. S., Franz, K. J., and Kinoshita, A. M.: Assessing Satellite and Ground-Based Potential Evapotranspiration for Hydrologic Applications in the Colorado River Basin, J. Am. Water Resour. Assoc., 52, 48–66, https://doi.org/10.1111/1752-1688.12370, 2016.
Breuer, H., Ács, F., Laza, B., Horváth, Á., Matyasovszky, I.,
and Rajkai, K.: Sensitivity of MM5-simulated planetary boundary layer height
to soil dataset: Comparison of soil and atmospheric effects, Theor. Appl.
Climatol., 109, 577–590, https://doi.org/10.1007/s00704-012-0597-y, 2012.
CarpatClim: Climate of the Carpathian Region, available at: http://www.carpatclim-eu.org/ (last access: 5 February 2020), 2020a.
CarpatClim: D2.5 – Report with final results of the data harmonization
procedures applied, including all protocols, per country, available at:
http://www.carpatclim-eu.org/pages/deliverables/ (last access: 5 February 2020), 2020b.
Ceglar, A., Croitoru, A.-E., Cuxart, J., Djurdjevic, V., Güttler, I.,
Ivančan-Picek, B., Jug, D., Lakatos, M., and Weidinger, T.: PannEx: The
Pannonian Basin Experiment, Clim. Serv., 11, 78–85,
https://doi.org/10.1016/j.cliser.2018.05.002, 2018.
Chen, D., Gao, G., Xu, C. Y., Guo, J., and Ren, G.: Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China, Clim. Res., 28, 123–132, https://doi.org/10.3354/cr028123, 2005.
Chervenkov, H., Slavov, K., and Ivanov, V.: STARDEX and ETCCDI Climate
Indices Based on E-OBS and CarpatClim, in: Numerical Methods and Applications, Springer Nature Switzerland, edited by: Nikolov, G., Kolkovska, N., and Georgiev, K., Lect. Notes Comput. Sci., 11189, 360–367,
https://doi.org/10.1007/978-3-030-10692-8_40, 2019.
Copernicus CCS: Copernicus Climate Change Service, available at:
http://surfobs.climate.copernicus.eu/dataaccess/access_carpatclim.php, last access: 5 February 2020.
Currie, D. J.: Energy and large-scale patterns of animal- and plant-species
richness, Am. Nat., 137, 27–49, 1991.
Cuxart, J. and Matjačić, B.: Operational atmospheric observational
networks and special observations, in: GEWEX workshop on the climate system of the Pannonian-Basin, Faculty of Agriculture, University of Osijek, 9–11 November 2015, Osijek, available at: http://meteo.hr/PANNEX_2015/index.php?id=programme (last access: 5 February 2020), 2015.
Dyck, S.: Overview on the present status of the concepts of water balance
models, in: Proceedings of Hamburg Workshop on New Approaches in Water Balance Computations, edited by: Van der Beken, A. and Herrmann, A., IAHS Publ., 148, 3–19, 1983.
Fisher, J. B., DeBiase, T. A., Qi, Y., Xu, M., and Goldstein, A. H.:
Evapotranspiration methods compared on a Sierra Nevada 2 forest ecosystem,
Environ. Model. Softw., 20, 783–796, https://doi.org/10.1016/j.envsoft.2004.04.009,
2005.
Fisher, J. B., Whittaker, R. J., and Malhi, Y.: ET come home: potential
evapotranspiration in geographical ecology, Global Ecol. Biogeogr., 20,
1–18, https://doi.org/10.1111/j.1466-8238.2010.00578.x, 2011.
GEWEX: The Global Energy and Water Cycle Experiment, available at: https://www.gewex.org/, last access: 5 February 2020.
Haas, J., Nagymarosy, A., and Hámor, G.: Genesis and Evolution of the
Pannonian Basin, in: Geology of Hungary, Regional Geology Reviews, edited by: Haas, J., Springer, Berlin, Heidelberg, ISBN 978-3-642-21910-8, 2013.
Horváth, Á., Nagy, A., Simon, A., and Németh, P.: MEANDER: The
objective nowcasting system of the Hungarian Meteorological Service,
Időjárás, 119, 197–213, 2015.
Katerji, N. and Rana, G.: Crop Reference Evapotranspiration: A Discussion of the Concept, Analysis of the Process and Validation, Water Resour. Manage., 25, 1581–1600, https://doi.org/10.1007/s11269-010-9762-1, 2011.
Lakatos, M., Szentimrey, T., Bihari, Z., and Szalai, S.: Creation of a
homogenized climate database for the Carpathian region by applying the MASH
procedure and the preliminary analysis of the data, Időjárás,
117, 143–158, 2013.
Lakatos, M., Weidinger, T., Horváth, Á., Hoffmann, L., Bihari, Z.,
Szentimrei, T., and Cuxart, J.: Computation of PET on daily scale to estimate the surface energy budget components in the region of the PannEx RHP, in: 8th GEWEX Open Science Conference: Extremes and Water on the Edge, 6–11 May 2018, Canmore, Alberta, Canada, available at:
https://www.gewexevents.org/wp-content/uploads/Website_S2_1500-canmore_pannex_et.pdf (last access: 5 February 2020), 2018.
Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., and Zhang, M.: A Comparative Study of Potential Evapotranspiration Estimation by
Eight Methods with FAO Penman–Monteith Method in Southwestern China, Water, 9, 734, https://doi.org/10.3390/w9100734, 2017.
Matenco, L. and Radivojević, D.: On the formation and evolution of the
Pannonian Basin: Constraints derived from the structure of the junction area
between the Carpathians and Dinarides, Tectonics, 31, TC6007,
https://doi.org/10.1029/2012TC003206, 2012.
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.:
Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis, Hydrol. Earth Syst.
Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, 2013.
Mihic, D., Spinoni, J., and Antofie, T.: Final report on the production of the climatology of the Carpathian Region, Final report, CARPATCLIM, p. 17,
available at: http://www.carpatclim-eu.org/docs/deliverables/D3_7.pdf (last access: 5 February 2020), 2013.
Nistor, M.-M., Gualtieri, A. F., Cheval, S., Dezsic, S., and Bótan, V. E.: Climate Change Effects on Crop Evapotranspiration in the Carpathian
Region from 1961 to 2010, Meteorol. Appl., 23, 462–469, https://doi.org/10.1002/met.1570, 2016.
Niu, G.-Y., Yang, z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res. 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Olefs, M., Schöner, W., Suklitsch, M., Wittmann, C., Niedermoser, B.,
Neururer, A., and Wurzer, A.: SNOWGRID – A new operational snow cover model
in Austria, in: International Snow Science Workshop, Grenoble, Chamonix
Mont-Blanc, 038–045, 2013.
PannEx White Book: A GEWEX Regional Hydroclimate Project (RHP) over the
Pannonian Basin (2019), WCRP Report 3/2019, World Climate Research Programme (WCRP), Geneva, Switzerland, 108 pp., 2019.
PannEx: The Pannonian Basin Experiment, available at: https://sites.google.com/site/projectpannex/, last access: 5 February 2020.
Penman, H. L.: Natural evaporation from open water, bare soil and grass,
P Roy. Soc. Ser. A, 193, 120–146, https://doi.org/10.1098/rspa.1948.0037, 1948.
Pieczka, I., Pongrácz, R., Szabóné André, K., Kelemen, F. D., and Bartholy, J.: Sensitivity analysis of different parameterization schemes using RegCM4.3 for the Carpathian region, Theor. Appl. Climatol., 130, 1175–1188, https://doi.org/10.1007/s00704-016-1941-4, 2017.
Rao, L. Y., Sun, G., Ford, C. R., and Vose, J. M.: 2011: Modeling Potential
Evapotranspiration of Two Forested Watersheds in the Southern Appalachians,
Am. Soc. Agric. Biol. Eng., 54, 2067–2078, 2011.
Rácz, C. S., Nagy, J., and Dobos, A. C. S.: Comparison of Several Methods for Calculation of Reference Evapotranspiration, Acta Silv. Lign. Hung., 9, 9–24, https://doi.org/10.2478/aslh-2013-0001, 2013.
Rey, J. M.: Modelling potential evapotranspiration of potential vegetation,
Ecol. Model., 123, 141–159, https://doi.org/10.1016/S0304-3800(99)00129-5, 1999.
Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.:
Land–atmosphere coupling and climate change in Europe, Nature, 443, 205–209, https://doi.org/10.1038/nature05095, 2006.
Sepulcre-Canto, G., Vogt, J., Arboleda, A., and Antofie, T.: Assessment of
the EUMETSAT LSA-SAF evapotranspiration product for drought monitoring in
Europe, Int. J. Appl. Earth Obs. Geoinform., 30, 190–202, https://doi.org/10.1016/j.jag.2014.01.021, 2014.
Spinoni, J., Antofie, T., Barbosa, P., Bihari, Z., Lakatos, M., Szalai, S.,
Szentimrey, T., and Vogt, J.: An overview of drought events in the Carpathian Region in 1961–2010, Adv. Sci. Res., 10, 21–32, https://doi.org/10.5194/asr-10-21-2013, 2013.
Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A.,
Németh, Á., Kovács, T., Mihic, D., Dacic, M., Petrovic, P.,
Kržic, A., Hiebl, J., Auer, I., Milkovic, J.,Štepánek, P.,
Zahradnícek, P., Kilar, P., Limanowka, D., Pyrc, R., Cheval, S., Birsan, M.V., Dumitrescu, A., Deak, G., Matei, M., Antolovic, I., Nejedlík, P., ŠtastnÃ!`, P., Kajaba, P., Bochnícek, O., Galo, D., Mikulová, K., Nabyvanets, Y., Skrynyk, O., Krakovska, S.,Gnatiuk, N., Tolasz, R., Antofie, T., and Vogt, J.: Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables, Int. J. Climatol., 35, 1322–1341, https://doi.org/10.1002/joc.4059, 2015.
Szalai, S. and Vogt, J.: CARPATCLIM – high resolution gridded database of
the Carpathian Region and calculation of drought indices as a contribution
to the European Drought Observatory, in: WRCP Conference, 24–28 October 2011, Denver, USA, T185A, 2011.
Szentimrey, T.: Multiple Analysis of Series for Homogenization (MASH), in:
Proceedings of the Second Seminar for Homogenization of Surface Climatological Data, WMO, WCDMP-No. 41, Budapest, Hungary, 27–46, 1999.
Szentimrey, T.: Manual of homogenization software MASHv3.03, Hungarian
Meteorological Service, Budapest, Hungary, 64 pp., 2011.
Szentimrey, T.: Final version of gridded datasets of all harmonized and
spatially interpolated meteorological parameters, per country, Final report, CARPATCLIM, p. 225, available at:
http://www.carpatclim-eu.org/docs/deliverables/D2_8.pdf (last access: 5 February 2020), 2012.
Szentimrey, T. and Bihari, Z.: Mathematical background of the spatial
interpolation methods and the software MISH (Meteorological Interpolation
based on Surface Homogenized Data Basis), in: Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, 2004, COST Action 719, COST Office, Budapest, Hungary, 17–27, 2007.
Thornthwaite, C. W.: An approach toward a rational classi?cation of climate,
Geogr. Rev., 38, 55–94, 1948.
Torma, C.: Detailed validation of EURO-CORDEX and Med-CORDEX regional climate model ensembles over the Carpathian Region, Időjárás, 123, 217–240, https://doi.org/10.28974/idojaras.2019.2.6, 2019.
Torma, Cs., Coppola, R., Giorgi, F., Bartholy, J., and Pongrácz, R.:
Validation of a High-Resolution Version of the Regional Climate Model RegCM3
over the Carpathian Basin, J. Hydrometeorol., 12, 84–100, https://doi.org/10.1175/2010JHM1234.1, 2011.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Westerhoff, R. S.: Using uncertainty of Penman and Penman–Monteith methods
incombined satellite and ground-based evapotranspiration estimates, Remote
Sens. Environ., 169, 102–112, https://doi.org/10.1016/j.rse.2015.07.021, 2015.
Ziese, M., Schneider, U., Meyer-Christoffer, A., Schamm, K., Vido, J.,
Finger, P., Bissolli, P., Pietzsch, S., and Becker, A.: The GPCC Drought
Index – a new, combined and gridded global drought index, Earth Syst. Sci.
Data, 6, 285–295, https://doi.org/10.5194/essd-6-285-2014, 2014.
Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., and Morgan,
K. T.: Step by Step Calculation of the Penman–Monteith Evapotranspiration
(FAO-56 Method), IFAS Extension, University of Florida, Florida, available at: http://edis.ifas.ufl.edu (last access: 5 February 2020), 2010.
Short summary
The PannEx is a Regional Hydroclimate Project (RHP) of the GEWEX project. A gridded meteorological dataset is available for the PannEx region as part of the CarpatClim database. The objectives of this study are: (i) to compute (ET0) for the CarpatClim dataset in the period 1961–2010 on the daily scale by using the Penman-Monteith method, and (ii) to compare ET0 with the classical Thornthwaite estimates of PET.
The PannEx is a Regional Hydroclimate Project (RHP) of the GEWEX project. A gridded...